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"Philosophy is written in that great book which ever lies
before our eyes — I mean the universe — but we cannot
understand it if we do not first learn the language and
grasp the symbols, in which it is written. This book is

written in the mathematical language, and the symbols are
triangles, circles and other geometrical figures, without

whose help it is impossible to comprehend a single word of
it; without which one wanders in vain through a dark

labyrinth."
Galileo Galilei



Resumo
Este trabalho trata sobre modelagem dinâmica, identificação de parâmetros e simulação de
veículos submarinos. Simulação tem um papel importante no desenvolvimento de veículos
submarinos. Entretanto, os simuladores robôticos comumente utilizados na atualidade,
como o Gazebo, não permitem uma representação fidedigna da dinâmica de um veículo
submarino, uma vez que os motores de física empregados no simulador não são capazes de
representar o termo hidrodinâmico da massa adicional. Essa falta de representatividade
não permite um cenário de teste realista do ambiente submarino. Este trabalho tem por
objetivo propor uma abordagem matemática que visa sobrepor a incapacidade do simulador
em representar a massa adicional sem a necessidade de alterar o motor de física.

Para simular o veículo submarino, é necessário saber os parâmetros do modelo dinâmico.
Assim, o presente trabalho tem também por objetivo identificar os parâmetros do modelo
dinâmico do veículo autônomo submarino FlatFish. Duas técnicas de identificação de
parâmetros foram empregadas: método dos mínimos quadrados e identificador adaptativo.
Na sequência foram realizados experimentos, em tanque e no mar, para identificar os
parâmetros do modelo dinâmico simplificado do FlatFish, utilizando dados coletados expe-
rimentalmente dos sensores embarcados no veículo. Análises comparativas de velocidades
entre dados medidos do veículo real e do modelo simulado atuado sobre os mesmos esforços
de controle mostram que os parâmetros identificados por ambos os métodos são capazes de
representar a dinâmica do veículo quando acionado em um grau de liberdade. No entanto
verificou-se que os parâmetros do modelo simplificado não são capazes de representar
a dinâmica do veículo quando atuado em vários graus de liberdade simultaneamente.
Verificou-se que há a necessidade de realizar uma identificação do modelo completo para
que a simulação do Gazebo juntamente com a técnica proposta para representar a massa
adicional, seja capaz de emular o comportamento do veículo real. Apesar disso, os parâme-
tros identificados podem ser utilizados nos pojetos de controladores baseados em modelo e
em filtros estimadores de estado.

Palavras-chave: Identificação de Parâmetros, Mínimos Quadrados, Método Adaptativo,
Robótica Submarina, Simulação Robótica, Gazebo



Abstract
This work address the topics of dynamical modeling, parameters identification and simu-
lation of underwater vehicles. Simulation plays an important role in the development of
underwater vehicles. Nevertheless, currently used robot simulators, such as Gazebo, do not
allow an accurate representation of the underwater vehicle’s dynamics, since the physic
engine employed by the simulator is not able to represent the hydrodynamical term of the
added mass. This lack of representativeness does not allow a realist test scenario of the
underwater environment. This work has as objective to propose a mathematical approach
to overcome the inability of the simulator in representing the added mass without changes
to the physic engine.

To simulate the underwater vehicle, it is necessary to know the parameters of the dy-
namical model. Therefore, this work has also for objective to identify the parameters of
the dynamical model of the autonomous underwater vehicle FlatFish. Two parameters
identification techniques were applied: least square method and adaptive identifier. In
sequence, experiments were conducted, in basin and in the sea, with the purpose of iden-
tifying the parameters of the simplified dynamical model of FlatFish, using data collect
experimentally from vehicle’s onboard sensors. Comparative analysis of velocities among
vehicle’s measured data and the simulated model actuated upon the same control effort
show that the parameters identified by both methods are able to represent the dynamics
of the vehicle when actuated in one degree of freedom. However, it was verified that
the parameters of the simplified model are not able to represent the vehicle’s dynamics
when actuated in several degree of freedom simultaneously. It was established the need
of performing parameters identification for the complete dynamical model so that the
Gazebo simulation altogether with the proposed technique to represent the added mass,
be able to emulate the behavior of the real vehicle. Despite that, the identified parameters
can be used in the project of model based controllers and in state estimator filters.

Keywords: Parameters Identification, Least Square, Adaptive Method, Underwater
Robotics, Robot Simulator, Gazebo
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1 Introduction

1.1 Motivation
The oceans cover around 71% of Earth’s surface. Of this total, about 95% are

unexplored, unknown to man. As an example, more men stepped on the lunar surface
than they arrived to the Mariana Trench, the deepest part of the world’s oceans, [5].

The fact that this environment is inhospitable to the human presence is a key
point so that the oceans remain unexplored. The use of Unmanned Underwater Vehicles
(UUV) is crucial to overcome this obstacle. Those vehicles are capable of collecting data
via embedded sensors that are used in several areas of human activities. UUVs are used
in discovering and monitoring of marine life, [6], in shipwreck exploration, [7], in the
inspection and maintenance of underwater structures, in mine countermeasures research,
among others, [8].

UUVs can be classified in Remotly Operated Vehicle (ROV) and Autonomous
Underwater Vehicle (AUV). ROVs, firstly developed, are tethered vehicles that requires
human operator. Work class ROVs, used in deep water applications, usually have high
operational costs associated with the dedicated support vessel required to accommodate the
vehicle and its accessories, like the launch and recovery system and the tether management
system, as well as the personal required to operate and maintain the ROV onboard, [9].

AUVs are untethered vehicles that carry their own power source and are able to
navigate autonomously, without direct intervention of an human operator. This capability
is of great interest to the offshore Oil & Gas industry, which requires frequent inspection
of subsea structures, like pipelines, manifolds, etc. The use of non-resident AUVs allows a
reduction of operational cost to the inspection missions, since it simplifies the operation in
terms of vessel requirements. For an AUV application, there is no need to perform tether
management nor to have a control room in the vessel, which is used basically for launching
and recovering the vehicle, [10].

The goal of the Oil & Gas industry is to perform on-demand inspection and support
surveillance operation in remote areas without the need of deploying a dedicated vessel, by
using subsea-resident AUVs. Such an AUV is assisted by a subsea docking station, which
is used for battery recharging and data transfer of mission plans and inspection results,
[10], [11]. Projects like Sabertooth, [12], and FlatFish, [1], are examples of vehicles that
aim to archive this goal.

The development of AUVs, specially those envisioned to be subsea residents, is a
costly activity. Underwater vehicles are usually composed of expensive hardware and their
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development requires several tests in marine environmental and/or large tanks during the
process. With the purpose of reducing costs and risks associate with those operations,
it is usual the deployment of simulated environment to test new concepts, strategies
and algorithms. Controllers, state estimators, navigation and perception are example of
functionalities that can be tested in simulation.

It is desirable the simulation to be as faithful as possible to the real physical world,
i.e. the dynamical behavior of simulated vehicle to be analogous to the real vehicle’s
behavior. This characteristic is important for the test of controllers for example.

Currently, 3D robot simulator such as Gazebo, [13], becomes an essential tool to
roboticists. It makes use of an embedded physics engine to simulate rigid-body dynamics
and collision, allowing a reliable simulation of aerial and ground vehicles. Nevertheless, the
same can not be said of underwater robots. The complexity of hydrodynamic effects acting
on an underwater vehicle is not fully incorporate in standard physics engines. Some works
either consider only the simpler hydrodynamics effects such as buoyancy and damping,
[14], or implement custom solution to include the challenging effects caused by the added
mass, [15], [16]. Despite those solutions, the appropriate method to incorporate the added
mass on standard robot simulator, including its physics engine, is still an open issue.

Other key point to obtain a reliable simulation is to determine the correct dynamical
parameters of the virtual vehicle. The parameter identification of the dynamical model
is usually a complex and operationally demanding task, duo the non-linear and coupled
characteristic of UUVs. Usually, parameters identification of UUVs is performed with
experimental data collected from onboard sensor, using identification techniques performed
either online or offline, [17], [18], [19], [20].

Being able to identify the parameters of the dynamical model is of benefit not only
for the quality of the simulation environment. Model-based controllers, state estimators
and model-based fault detection and diagnosis are equally enhanced by the incorporation
of the dynamical model during UUV operation. [4] applied a nonlinear model predictive
control to the FlatFish AUV. [21] employed several model-based controllers to a ROV and
compared their performances, concluding that model-based controllers outperformed the
proportional derivative controller in trajectory tracking.

For the AUV case, the necessity of the dynamics model is even more relevant for state
estimation and navigation. Underwater vehicles can not rely in sensors or communication
based on electromagnet waves, such as GPS, WiFi and communication via satellite, due
the strong attenuation caused by sea water,[22]. Usually, AUVs have at their disposal
sensors based on acoustic waves, like Doppler Velocity Log (DVL) for the measurement
of velocity and Ultra-Short Baseline (USBL) or array of Long Baseline (LBL) for the
measurement of position. Nevertheless the acoustic sensors can have a high latency or
even have discarded samples.
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The common way of determining the position of an UUV is by dead-reckoning with
DVL and Inertial Navigation System (INS) data, i.e. by integrating the linear and angular
velocities, what causes the error to increase continuously, [23].

It is common to use the dynamical model of the vehicle to aid the navigation system.
[24] applied a model-aided INS with a Kalman filter to increase navigation performance
of an AUV deployed in ocean. [25] made use of a nonlinear dynamic model-based state
estimator to a ROV, both in laboratory and in-field, comparing the nonlinear observer
with an extended Kalman filter.

For the case of fault detection, many works explores the importance of a model-
based implementation. [26] explores some techniques of model-based residual generation
using parameters identification and state estimation methods. Residuals are functions that
are accentuated by faults, being a simple example the difference between the measured
output and the output provided by the nominal model. [27] applied the residual analyses in
order to detect thruster fault, by comparing measured data with the estimation provided
by vehicle’s model. [28] explores the possibility to do fault detection by performing online
parameters identification and comparing the identified values with nominal ones known a
priori. It is based on the assumption that faults are reflected in the physical characteristic
of the system, by altering the parameters of the model.

The efficiency of such controllers, state estimators and fault detectors is subjected
to the availability of model’s parameters that is able to represent the vehicles dynamics.

1.2 General Objective
The main objective of this work is to obtain the parameters of the dynamical model

of an AUV via adaptive technique and least square method, using experimental data
collected from onboard sensors. The purpose of the identified parameters is to assess the
simulated vehicle in the robot simulator Gazebo and in a custom simulator, with relation
to logged data from the real vehicle.

1.3 Specific Objectives

• Develop algorithm to simulate the dynamics of an AUV;

• Improve robotic simulator Gazebo to consider the added mass effect present in
underwater dynamics;

• Identify parameters of the simplified dynamical model of an AUV;

• Analyze performance of the adaptive identifier and of the least square method;
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• Analyze the influence of gains in the adaptive identifier;

• Analyze the behavior of a simulated vehicle with simplified dynamics when performing
a multi degree of freedom actuation;

1.4 Thesis Outline
This document is comprised by this chapter, that presents the importance of

simulation for the development of underwater robotics and its requirement of the model’s
parameters, the other areas in which the dynamics model parameters are used, the
motivation and goals of this work.

Chapter 2 presents the FlatFish AUV, the underwater vehicle used during experi-
ments.

Chapter 3 introduces to the modeling of underwater vehicles, including the hydro-
dynamics terms and the simplification procedure commonly applied.

Chapter 4 explores the simulation tools for underwater vehicles, considering its
particularities due the hydrodynamics influence.

Chapter 5 is dedicated to the parameters identification techniques of underwater
vehicles, with a focus on the adaptive identifier and the least square method.

Chapter 6 presents the experiments of parameters identification of the FlatFish
vehicle both in a basin and at the sea. At the end of the chapter, the identified parameters
is analyzed within the Gazebo simulation for the multi degree of freedom actuation case.

Chapter 7 concludes the work and presents suggestions for future work.

Appendix A presents the Savitzky-Golay filter and its ability to derive a set of
data based on least-square technique.

Appendix B shows the dataset used for parameters identification as well as the
model’s parameters provided by the adaptive identifier.

Appendix C explores the influence of gains in the adaptive identifier. Five hundreds
sets of model’s parameters were identified, each one with an unique combination of gains.
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2 FlatFish

FlatFish, represented in Figure 1, is an autonomous underwater vehicle developed
by the Brazilian Institute of Robotics (BIR) at SENAI CIMATEC located in Salvador,
in partnership with the Robotics Innovation Center (RIC), the Bremen location of the
German Research Center for Artificial Intelligence (DFKI). Two FlatFish vehicles were
build as the result of a four years project for the Royal Dutch Shell, after it acquired BG
group, with funds provided by the Brazilian National Agency of Petroleum (ANP) and
the Brazilian Agency for Industrial Research and Innovation (EMBRAPII).

The aim of FlatFish is to perform repeated inspection of Oil&Gas subsea structures,
such as pipelines, manifolds and subsea isolation valve (SSIV). It was designed to be a
subsea-resident AUV, meaning that a docking station present on the sea bottom enables
the vehicle to recharge its battery and exchange data with a topside base while underwater.

A mission scenario for FlatFish is, [1]: The vehicle, in rest at the docking station,
receives an inspection mission of a particular asset, e.g. a SSIV, from topside. FlatFish
leaves the docking station and navigates heading to the designated structure, using external
references, like pipelines, as guides. While in transit, the vehicle makes use of its perception
sensors to avoid obstacles and to record data of the asset’s status. Once it reaches the area
of interest, visual and acoustic data is gathered from the inspection object. The vehicles
than navigates back to the docking station using the same approach as before. In the
docking station, the vehicles batteries are recharged and the logged data is downloaded to
topside servers, where it can be processed.

Figure 1 – FlatFish at the DFKI RIC test facilities in Bremen, Germany, [1].
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2.1 Sensors
FlatFish has advanced sensors that allows it to accomplish its goals: autonomous

navigation in an subsea Oil&Gas field and inspection of its assets. Table 1 shows an
overview of FlatFish’s features.

Table 1 – FlatFish Specifications, [1]

Depth rating 300 m
Weight (in air) 275 kg
Size (LWH) 220 cm x 105 cm x 50 cm
Propulsion 6x 60N Enitech ring thrusters

(120N in each direction)
Battery Lithium-Ion battery 5,8 kWh (11,6 kWh) @ 48V
Communication Rock7mobile RockBlock Iridium satellite modem (1,6 GHz)
(surface) Digi XBee-Pro-868 (868 MHz)

Ubiquiti PicoStation M2 HP WLAN-Modul (2,4 GHz)
Communication Evologics S2CR 48/78 kHz
(submerged) usable as USBL transponder
Communication 10 GBit/s optical fibre
(tethered) 1 GBit/s Cat5e (max. 50m)
Light 4x Bowtech LED-K-3200 (3200 lumen each)
Laser Line 2x Picotronic LD532-20-3(20x80)45-PL line laser
projector 20mW each @ 532nm
Sonar BlueView MB1350-45 Multibeam Profiler (inspection sonar)

Tritech Gemini 720i Multibeam Imager (navigation sonar)
2x Tritech Micron Sonar (obstacle avoidance)

Camera 4x Basler ace acA2040-gc25
2048x2048 at 25 frames/s, colour, GigabitEthernet

Depth sensor Paroscientific 8CDP700-I, sampling rate of 5Hz
INS/AHRS KVH 1750 IMU, sampling rate of 100Hz
DVL Rowe SeaProfiler DualFrequency 300/1200 kHz, sampling rate of 4Hz

2.1.1 Navigation System

Underwater navigation and localization are major challenges for AUVs. In the
absence of a reliable position measurement, FlatFish fuses depth, linear and angular
velocities data, provided by pressure sensor, doppler velocity log and inertial navigation
system respectively, to perform dead-reckoning. As the error associate with the dead-
reckoning increases over time, FlatFish uses its visual and acoustic perception sensors to
identify known structures in the seafloor, providing a known location to the navigation
system which is used to update the dead-reckoning, significantly reducing the estimation
error. An ultra-short baseline placed in the docking station is also able to localize FlatFish’s
within 1km radius and to delivery the computed position to the navigation system via
vehicle’s acoustic modem.
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2.1.2 Inspection System

The main goal of FlatFish is to perform inspection of subsea infrastructure. To
achieve its objective, FlatFish possess visual and acoustic systems which can overcome
environmental challenges such as high turbidity. The visual system comprises two pairs of
stereo cameras, one looking ahead and the other downward, two pairs of LEDs and two
lasers line projectors used for 3D reconstruction. The acoustic system is composed by a
multi-beam profile sonar that can be used in low visibility.

2.2 Propulsion
FlatFish has six propellers distributed in the vehicle according Figure 2. They are

rim-driven thrusters, meaning that they do not have shaft and gearbox, as seen in Figure 3.
It allows the propeller to be relatively symmetrical and consequently to provide a similar
thruster output in both direction, reaching up to 60N .

Figure 2 – Configuration of FlatFish’s thrusters, [2].

2.2.1 Thruster Model

During vehicle’s operation, the force applied by a thruster can not be direct
measured, due to the complex interaction between thruster and water. Instead, its rotation
speed is measured and used for controlling the propeller. Since the rotation speed is
accessible, a common approach used to model the force applied by a thruster is given by,
[29],

utif = CtΩ|Ω| , (2.1)

where utif ∈ R is the force applied by the thruster i, Ct ∈ R is the thruster coefficient and
Ω ∈ R is its rotation speed.
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Figure 3 – FlatFish’s rim-driven thruster, [3].

The coefficient Ct can be determined experimentally using least square method.
Based on measured data of rotation speed and force given by the thruster’s supplier, it
is determined Ct = 6.7×10−5N · s2/rad2. Figure 4 shows the relation between thruster’s
force and rotation speed.
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2.2.2 Thruster Configuration Matrix

In order to determine the influence of a thruster in the vehicle, it is important to
compute the force and torque applied by the propeller in the vehicle’s center of gravity
(COG). It requires a map of orientation and position of each thrusters, called Thruster
Configuration Matrix (TCM), that convert the thruster’s forces to vehicles forces and
torques. The map is done as

u = Butf , (2.2)

where u ∈ R6 are the forces and torques applied in the vehicle by the thrusters, B ∈ R6×n

is the TCM, utf ∈ Rn is the force applied by each thruster and n is the amount of thrusters.
In FlatFish case, n = 6.

Each column of the TCM can be computed as

Bi =
 Rtibe1

J (ptib)Rtibe1

 , (2.3)

where

• Rtib ∈ SO(3) is the rotation matrix from the thrusteri frame to the body frame,

• ptib ∈ R3 is the position of the thrusteri frame in the body frame,

• e1 =
[
1 0 0

]T
is the direction of propulsion in thrusteri frame, and

• J : R3 → R3×3 is the skew-symmetric matrix used for cross product, given by

J



p1

p2

p3


 =


0 −p3 p2

p3 0 −p1

−p2 p1 0

 . (2.4)

For FlatFish, the identified TCM can be summarized as shown in Table 2.

Table 2 – Thruster Configuration Matrix for FlatFish

T1 T2 T3 T4 T5 T6
Surge 1 1 0 0 0 0
Sway 0 0 -1 -1 0 0
Heave 0 0 0 0 1 1
Roll 0 0 0.032 -0.032 0 0
Pitch -0.0315 -0.0315 0 0 -0.4235 0.556
Yaw 0.44 -0.4 -0.5735 0.936 0 0
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2.3 Software Architecture
FlatFish’s software was implement using the Robot Construction Kit (Rock1), a

component-based framework for robotics development. It provides a rich set of tools and
services required for developing, deploying and monitoring a robotic systems, such as
visualization, logging, log replay, states monitoring, etc, [1].

The integration of software components that allows the creation of complex be-
haviors of the robot is done by Syskit2. Syksit is the management layer responsible for
establishing connection of component’s ports, applying specific configurations to the sys-
tem, deploying the required components for a specific mission and monitoring the internal
states of the system, [30].

A integration of Rock and the robot simulator Gazebo is available. It allows to test
the integrated software stack and to verify the states transitions of the components on
normal operation and during fault detection in a seamless way. Based on the architecture
design used to integrate Rock-Syskit to Gazebo, the same software used in simulation can
run on the real vehicle, requiring minimal changes for that.

2.4 Control Chain
FlatFish’s control chain is based on a P cascade controller, as shown in Figure 5.

The designed control chain makes the assumption that the vehicle is passively stable in
roll and pitch, since the vehicle’s center of buoyancy was designed to be above the center
fo gravity. The outer controller is responsible for controlling the vehicles position and
heading, which in turns provides the reference input for the velocities controller, what in
sequence provides body efforts references.

The Buoyancy Compensation component includes the resultant gravitational term
on the body efforts. From the perspective of the velocity controller, the vehicle have
a neutral buoyancy. The total body efforts to be applied in the vehicle is converted in
thruster’s force commands by the Optimal Allocation, which uses optimization theory for
that purpose [2]. The thruster’s forces are then converted to set-point of rotation speed,
according Equation 2.1, and are provided to vehicle’s thrusters.

FlatFish’s control chain has an operation frequency of 10Hz.

1 http://rock-robotics.org/
2 https://rock-core.github.io/rock-and-syskit/
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Figure 5 – Control chain used in FlatFish, [4].
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3 Dynamical Modeling of Underwater Vehi-
cle

Being able to compute the dynamical behavior of an underwater vehicle is an
important factor for the operation of an AUV. The dynamical model can be used for
state estimation, embedded in model based controllers or in simulation of the underwater
vehicle. Determining the dynamical model is the first step in this process.

3.1 Reference Frames
First of all, it’s required to establish the coordinates system to be used. In this

work, the vehicle’s body frame is according the Figure 6. The inertial reference frame is
fixed in the water’s surface, having the z axis pointing upward, [31]. It is worth noting
that the reference system used is different of the one usually used by the naval community,
where the z axis points downward, [32].

Figure 6 – Body frame of FlatFish [2].
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3.2 Kinematic Model
The kinematics equation of a rigid body express in body frame is given by:

ṗ = Rν ,

q̇ = 1
2q ·

0
ω

 ,
(3.1)

where

• p ∈ R3 is the position of the body frame’s origin in the inertial frame,

• R ∈ SO(3) is the rotation matrix from the body frame to the inertial frame,

• q ∈ R4 is the unitary quaternion representation of orientation R, with q =
 q0

q1:3


being q0 ∈ R the real part and q1:3 ∈ R3 the imaginary part of the quaternion,

•
(
·
)
denotes quaternion’s multiplication operator, [33], [34], and

• ν, ω ∈ R3 are, respectively, rigid body’s linear and angular velocities, represented in
body frame.

3.3 Dynamic Model of a Rigid Body
The dynamics equation of a rigid body with respects to the body frame can be

represented in terms of body frame velocity, υ =
[
νT ωT

]T
, and external efforts, uRB ∈ R6,

as [32]:
MRBυ̇ −H(MRBυ)υ = uRB , (3.2)

where

MRB =
 mI3×3 −mJ (cG)
mJ (cG) I0

 (3.3)

represents the rigid body inertia matrix. Here,

• m ∈ R+ is the body’s mass,

• I0 ∈ R3×3, I0 = IT
0 � 0, is the inertia tensor with respect of the origin,

• cG ∈ R3 is the center of gravity, and

• I3×3 is the identity matrix.
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It made use of the skew-symmetric matrix J : R3 → R3×3, defined in Equation 2.4.
The term H(MRBυ)υ represents the Coriolis and centripetal term. It can be parameterized
such that H(MRBυ) = −H(MRBυ)T , [32], given the function H : R6 → R6×6 such as

H
ν

ω

 =
 03×3 J (ν)
J (ν) J (ω)

 . (3.4)

3.3.1 Hydrodynamic Effects

When moving in a fluid, the rigid body’s dynamics is affected by the fluid that
surround it. It’s well understood the effect of restoring efforts due the Archimede’s principle
and the presence of damping that dissipate energy from the system. Other important term
to be considered is the presence of kinetic energy in the fluid. Once the vehicle navigates,
the fluid must move aside and close in behind the vehicle. As an consequence the fluid
possess kinetic energy and any change on it need to be impart by the vehicle. This effect
is the so called added mass, [32], [35].

The hydrodynamics effects acting on an underwater vehicle is given by, [32]:

uH = −MAυ̇ + H(MAυ)υ −D(υ)υ + G(R) , (3.5)

where

• MA ∈ R6×6 is the symmetric positive definite (SPD) matrix of hydrodynamic added
mass,

• H(MAυ) represents the Coriolis and centripetal term of the added mass,

• D(υ) ∈ R6×6 is the hydrodynamic damping as a function of the velocity and is
dissipative (D(υ) � 0), and

• G(R) is the restoring forces and torques due gravity, such that G(R) = G0(R)+Gb(R),

with G0(R) = −
 WRT e3

WJ (cG)RT e3

, Gb(R) =
 BRT e3

BJ (cB)RT e3

, being W , B ∈ R+ the

weight and buoyancy of the vehicle, cG, cB ∈ R3 the center of gravity and center of
buoyancy respectively and e3 =

[
0 0 1

]T
.

3.3.1.1 Hydrodynamic Damping

The representation of D(υ) is not definitive. The exact modeling of the hydrody-
namic damping is hard to be obtained due the complexity of the several terms involved,
like skin friction, vortex shedding, potential damping and wave drift damping, [32].

A general 6 DOF representation of the damping term considers a linear and a
quadratic term, [32], [36]:

D(υ) = DL +
( 6∑

1
|υi|DQi

)
, (3.6)
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where DL and DQi ∈ R6×6, whit i = 1 · · · 6 referring to each DOF.

Previous studies show that for a coupling 6 DOF dynamics, the damping effect
can be modeled using the fully coupled quadratic term, ignoring the linear contribution
[37], [20], [38], such as

D(υ) =
( 6∑

1
|υi|DQi

)
. (3.7)

Other approach simplifies the damping effect. It consider the vehicle performing
non-coupled motion, leading to uncoupled damping terms, [32], which results in

D(υ) = diag{dL1 , dL2 , dL3 , dL4 , dL5 , dL6}+
diag{|v1|dQ1 , |v2|dQ2 , |v3|dQ3 , |v4|dQ4 , |v5|dQ5 , |v6|dQ6} . (3.8)

3.4 Complete Dynamic Model
Knowing that the efforts acting in an underwater vehicle are the control input and

the hydrodynamical efforts,
uRB = uH + u , (3.9)

the complete dynamical equation of an underwater vehicle can be obtained from Equations
3.2 and 3.5,[32], [20]:

Mυ̇ = H(Mυ)υ −D(υ)υ + G(R) + u , (3.10)

where

• M = MRB +MA is the inertia matrix

• H(Mυ) represents the Coriolis and centripetal term,

• D(υ) is the damping effect,

• u ∈ R6 represent the forces and torques applied in the body frame,

• υ =
[
νT ωT

]T
is body frame’s velocity, and

• G(R) represents the restoring forces and torques.

3.5 Simplified Dynamic Model
The 6 DOF dynamics equation of an underwater vehicle can be simplified, as the

follow considerations are valid for some classes of UUV, [39],[17], [32]:

• The center of mass is located at the origin of the body frame,
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• The body axis coincide with the principal axes of inertia, such that I0 is diagonal,

• The vehicle have three plane of symmetry,

• The vehicle operates at small velocities (< 2m/s),

• The vehicle performs non-coupled motions, and

• The vehicle is undergoing small attitude motion.

Those assumptions are made in order to ignore the off-diagonal elements of matrices
M , DL and DQ, to neglect the Coriolis and centripetal term, and to ignore movement in
pitch and roll, which result in

m1 0 0 0 0 0
0 m2 0 0 0 0
0 0 m3 0 0 0
0 0 0 m4 0 0
0 0 0 0 m5 0
0 0 0 0 0 m6


υ̇ =

−



dQ1|υ1| 0 0 0 0 0
0 dQ2|υ2| 0 0 0 0
0 0 dQ3|υ3| 0 0 0
0 0 0 dQ4|υ4| 0 0
0 0 0 0 dQ5 |υ5| 0
0 0 0 0 0 dQ6|υ6|


υ

−



dL1 0 0 0 0 0
0 dL2 0 0 0 0
0 0 dL3 0 0 0
0 0 0 dL4 0 0
0 0 0 0 dL5 0
0 0 0 0 0 dL6


υ +



0
0
b3

0
0
0


+ u . (3.11)

As such, the dynamical model equation of a decoupled single DOF of an underwater
vehicle is given by ,[18], [40]:

miυ̇i = −dQi
υi|υi| − dLi

υi + bi + ui , (3.12)

where, for each degree of freedom i, mi, dQi
, dLi

∈ R+ represent the total mass, the
quadratic damping and the linear damping, respectively, bi ∈ R, bi = 0 for i 6= 3, represents
the resultant buoyancy and ui is the control input.

Isolating the acceleration, Equation 3.12 becomes

υ̇i = αiui + βiυi|υi|+ µiυi + νi (3.13)
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Table 3 – Definition of lumped parameters

Lumped
Parame-
ters

Physical
Definition

αi m−1
i

βi −m−1
i dQi

µi −m−1
i dLi

νi m−1
i bi

and can be written in the vectorial form

υ̇i = ΦT
i fi , (3.14)

where Φi =
[
αi βi µi νi

]T
is the vector of lumped model parameters and fi =[

ui υi|υi| υi 1
]T

is a nonlinear vector of state and control input.

The convention between lumped parameters and their physical definition can be
seeing in Table 3.
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4 Simulation of Underwater Vehicle

This chapter explores the simulation of underwater vehicles, considering its par-
ticularities due the hydrodynamics influence. Section 4.1 performs a review on several
simulators for underwater vehicles, both on the marine and the robotics field. It is given a
focus on the Gazebo simulator and its integration with Rock framework, [41], since it’s the
system used during the FlatFish project. Section 4.2 proposes a mathematical approach
to include the added mass effect on Gazebo simulator and in the sequence it compare two
implementation methods to enhance the Rock-Gazebo integration available.

4.1 Literature Review
The development of unmanned underwater vehicles usually requires validation of

software in a simulation environment. Tests in virtual environments help reduce the high
costs of deployment of a real UUV, that comes either by the necessity of a vessel for open
water operation or by rely on the availability of a large enough tank. Moreover, simulation
allows to test the vehicle in varied situations, detecting possible control and software errors
prior to real deployment. However, despite the presence of virtual UUVs, model based
control algorithms could not be extensively tested on simulation due the incapacity of
off-the-shelf robot simulators to compute the interaction of a fluid with a submerged body
with intricate geometry.

Robot simulators, like Gazebo [13], allow to represent the dynamic environment
where a robot can interact. They make use of a physic engine, a visualization layer and an
Application Program Interface (API) that enables the interaction between the simulator
and third part software, which can be used for real-time Hardware-In-the-Loop (HIL)
simulations.

Gazebo allows the integration with four physical engines, where the Open Dynamic
Engine (ODE) [42] is the default option. The physics engine is responsible for simulating
the dynamics and kinematics of articulated rigid-bodys, usually having a built-in collision
detection. It does not consider fluid interaction or hydrodynamic effects.

Commercial HIL simulators for the off-shore industry are available, e.g. the Cy-
berSea Simulator [43], [44]. This simulator is able to simulate the hydrodynamic effects of
vessels as well as power and propulsion systems.

Previous works have developed underwater simulations to test UUV. The Marine
Systems Simulator (MSS) [45] is a Matlab/Simulink platform that allows the simulation of
marine systems like vessels and UUVs. It considers hydrodynamic effects and environmental
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conditions like waves, wind and currents, allowing Simulink based controllers to be tested.

In [14], an UUV with a manipulator is simulated in Gazebo together with the ROS1

framework, although buoyancy and damping effects are present, the added mass effect
is not taken into account. In [46], a simulation environment for marine robotics called
MARS is proposed. It enables the simulation of multiples UUVs, with a special focus on
sonar imaging. Although several underwater related terms are present, like water current,
waves, computation of the center of buoyancy and volume calculation, the added mass
influence is not mentioned.

In [15], a ROS based simulation using Gazebo is developed, being able to simulate
several UUVs. It addresses the problem of added mass in simulation, affirming that it
can lead to instability depending on the relations of added mass matrix coefficients and
vehicle’s mass. The solution used in [15] to overcome this problem is to use a low-pass filter
in the acceleration data to prevent an unstable simulation, but no performance results
were shown.

The UWSim [16], a software tool for visualization and simulation of robotic un-
derwater missions allows the added mass effect to be take into account. For that, it relies
on a separate module written in Matlab that computes the UUV’s states and update
the vehicles pose in the scene. In parallel, it also makes use of the physics engine Bullet
to handle contact interaction. In this case the Matlab module is used to overcome the
inability of the physics engine to consider the added mass effect.

In [41], the Rock framework is integrated with Gazebo, allowing drop-in real-time
simulations. The simulation resources are exported to the Rock system by instantiating and
synchronizing Rock’s components inside a Gazebo system plugin. The visualization of the
simulation uses Rock’s graphical user interface (GUI) packages to represent 3D data model,
which is based on the 3D graphics toolkit named OpenSceneGraph. An AUV simulation is
presented, in which the hydrodynamic effect and thruster model are independent Gazebo
plugins. The underwater plugin incorporating many fluid effects like buoyancy, damping
and water current. Nevertheless added mass effect is not considered.

The Rock-Gazebo integration, [41], has been used for the FlatFish team as a
development tool, allowing tests of new software components developed in Rock on the
virtual FlatFish vehicle deployed in the Gazebo simulation. Due the representation lack of
the added mass effect on it, there was the opportunity to improve the available tool by
proposing a way to make the simulation take the added mass effect in account.
1 http://www.ros.org/
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4.2 Simulator Improvements for Underwater Vehicle Dynamics
This present work proposes a mathematical approach to include the added mass

effect in Gazebo, without the need to change the physics engine. It will be implemented
based on the Gazebo plugin developed in [41] and will have the added mass inertia as
parameters.

The well known motion model equations that describe an UUV is given by Equation
3.10. ODE, the default physics engine of Gazebo, uses a Lagrange multiplier velocity based
model to derive the equation of motion of a rigid body and also Linear Complementarity
Problems (LCP) to consider contact and friction with other bodies, [42], [47]. Without
loss of generality, Gazebo integrates the dynamics of a rigid body represented in body
frame, obtained from the Newton-Euler formulation, as

MRBυ̇ = H(MRBυ)υ + G0(R) + ug , (4.1)

where ug ∈ R6 represents the forces and torques applied to the vehicle.

The objective is to make the behavior of the rigid body in Gazebo as similar as
possible to the submerged rigid body’s dynamics, including the added mass effect. Moreover,
this should be implemented as a Gazebo plugin, since the modification of Gazebo and the
underlying physics engine would be a major undertaking (if at all possible).

A common approach in underwater simulation for robotic system takes into account
the buoyancy and damping terms only, completely ignoring the added mass effect, as in
[14], [41] and [46]. In [15], the added mass effect is considered, where ug in Equation 4.1 is
proposed as

ug = −MAυ̇ + H(MAυ)υ −D(υ)υ + Gb(R) + u . (4.2)

Such an approach can lead to instability. The acceleration is required to compute
the hydrodynamical efforts, −MAυ̇, which are used by the physical engine to determine the
new acceleration, velocity and pose. It means that only the previous computed acceleration
is available, i.e. using the effort −MAυ̇[k − 1] to determine the new acceleration from
MRBυ̇[k]. In such way, ug, represented by Equation 4.2 turns Equation 4.1 stable only if
MA ≺MRB, or alternatively ‖M−1

RBMA‖2 < 1.

The proposed solution in this work is to consider a compensated effort C such
that the derivative of the velocity computed by Gazebo becomes equal to that of UUV’s
equation. Rewriting the dynamics of an UUV given by Equation 3.10 as

(MRB +MA)υ̇ = F (υ,R) , (4.3)

where
F (υ,R) = H(Mυ)υ −D(υ)υ + G(R) + u (4.4)

and using F instead of F (υ,R) from now on for simplification.
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Considering ug as

ug = H(MAυ)υ −D(υ)υ + Gb(R) + u+ C (4.5)

and knowing that H(Mυ) = H(MRBυ) + H(MAυ) and G(R) = G0(R) + Gb(R), the
dynamics computed by Gazebo, given by Equation 4.1, can be rewrite as

MRBυ̇ = H(Mυ)υ −D(υ)υ + G(R) + u+ C , (4.6)

which in turn can uses Equation 4.4 to become

MRBυ̇ = F + C . (4.7)

Combining Equations 4.3 and 4.7, gives

υ̇ = (MRB +MA)−1F = M−1
RB(F + C) , (4.8)

resulting in
C = (MRB(MRB +MA)−1 − I)F , (4.9)

where I ∈ R6×6 is the identity matrix. The compensated effort C, given by Equation 4.9,
when applied in the Gazebo formulation, as Equation 4.6, results in the same UUV’s
dynamics, given by Equation 3.10. In other words, using the compensated effort C, defined
as a function of the total efforts applied in the vehicle, makes Gazebo computes the desired
υ̇ of an UUV, considering the added mass.

As MA and MRB are SPD, it implies the follow relations:

(MRB +MA) �MRB � 0 , (4.10)

I �MRB(MRB +MA)−1 � 0 , (4.11)

0 � (MRB(MRB +MA)−1 − I) � −I . (4.12)

The fact that ‖(MRB(MRB +MA)−1 − I)‖2 < 1 is indicative of solution stability.

4.2.1 Implementation in Gazebo

An UUV can be described in Gazebo as a set (model) of rigid bodies (links) fixed
to a main body. The external efforts applied in each link are directly transmitted to the
main link, in such way that the resultant efforts are applied in the model’s COG. The
mass matrix MRB is also computed related to the COG. This approach was chosen once
UUV model identification methods are used to define parameters for the whole vehicle
[20], [37], [40].
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Two implementation methods were proposed. Method 1 considers that the efforts, u,
applied in the vehicle are not accessible in the present step and therefore the compensated
effort, C, makes use of the previous efforts applied in the vehicle. Method 2 does assume
that they are available, and modifies them to compensate for the added mass.

Method 1

Gazebo does not provide access to u, in Equation 4.6, in the current simulation
iteration, i.e. no access to the control effort applied by thrusters nor efforts due contact
interaction with others models and the world. However, Gazebo does provide methods to
access the previous resultant efforts applied to a link. We therefore apply compensated
efforts C based on the resultant effort of previous step. This implies that Equations 4.7
and 4.9 become

MRBυ̇[k] = F [k] + C[k] , (4.13)

with
C[k] = (MRB(MRB +MA)−1 − I)F [k − 1] , (4.14)

where F [k] is the body frame resultant effort applied in the COG during iteration k.
Attention need to be taken when determining F [k − 1]. Gazebo’s API provides methods
that return the net force and torque applied in the link’s COG, meaning that they do not
consider the Coriolis and centripetal term of the rigid body, H(MRBυ).

In order to compute F [k − 1], the net efforts in the main body (a link) provided
by Gazebo’s API should be considered in the model’s COG, by taking in account the
torque at the model’s COG generated by the main body’s force. In sequence, the Coriolis
and centripetal term, H(MRBυ), shall be added to the resultant effort and, at last, the
influence of the compensated effort of the previous step, C[k − 1], shall be removed. In
such a way, the computed term F [k − 1] can be used to determine the new compensated
effort C[k].

Method 2

The assumption here is that there is no contact interaction with other elements
in the scene. In our implementation, both thruster efforts and hydrodynamic effects are
implemented within Gazebo plugins that we control, thus we have access to them before
they are passed to Gazebo for integration. We can therefore edit the forces applied in
the present iteration, instead of accessing them in the next iteration. In such way, the
compensated effort, given by Equation 4.9, can be expanded directly in Equation 4.5
leading to

ug = (MRB(MRB +MA)−1 − I)(H(MRBυ)υ + G0(R))+
MRB(MRB +MA)−1(H(MAυ)υ −D(υ)υ + Gb(R) + u) , (4.15)
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where (MRB(MRB +MA)−1−I) applies to the effects considered by Gazebo andMRB(MRB +
MA)−1 applies to the hydrodynamic and thruster efforts.

4.2.2 Simulation Procedures

The proposed solution was implemented as an improvement of the FlatFish AUV
simulation presented in [41], using an already developed framework-simulator platform.
It allows to run algorithms implemented in the Rock framework in Gazebo’s simulation
environment. The simulated vehicle is a virtual representation of the FlatFish AUV,
presented in Chapter 2. The vehicles existing control chain is used to generate the forces
applied by the thrusters. The vehicles simulation model, represented in the Simulation
Description Format (SDF)2, describes the inertia term of all links that form the vehicle.
As the links have a constant pose between them, the COG of the overall model can be
computed.

With the model’s COG known, as well as the orientation and position of the
thrusters, the resulting forces and torques in the vehicle can be determined. The TCM
embeds this information. It results in the map of thrusters forces to vehicle’s efforts, as
described in Equation 2.2

In order to compare the proposed solutions with each other, the C++ library
uwv_dynamic_model3 was used. The library simulates the dynamics of a submerged rigid
body by integrating Equations 3.1 and 3.10, using the fourth order Runge-Kutta method.
A initial state of pose and velocity (usually zero) is determined for the rigid body. It is also
possible to configure the dynamical equation to consider the Coriolis term for a coupled
model, as Equation 3.10, or to ignore it for a decoupled and simplified model, as Equation
3.11. For the work present in this section the coupled model was used.

The schematic used is depicted on Figure 7. The Gazebo simulation provides state
information feedback (pose and velocity) to the control chain. The control chain provides
thruster commands which are used to feed the simulated vehicle both in Gazebo as well
as in uwv_dynamic_model. The body frame velocities of both models are compared in
order to evaluate the proposed methods.

The parameters of Equation 3.10 were the same in Gazebo and uwv_dynamic_model.
The simulated vehicle has a mass of 350 Kg, moments of inertia Ix, Iy and Iz of 146, 36, 124
Kgm2 respectively. The added mass matrixMA = diag(

[
500 700 1200 290 300 400

]
).

The damping is composed by a linear and a quadratic terms, in such a way that
D(υ) = diag(

[
50 50 50 45 45 45

]
)+|v|Tdiag(

[
40 40 40 35 35 35

]
), and a resul-

tant buoyancy of 18N applied 0.1m above COG. The parameters used in these simulations
match the values identified for the FlatFish system in [40].
2 http://sdformat.org/
3 https://github.com/rock-control/control-uwv_dynamic_model
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Figure 7 – Schematic used to evaluate Gazebo Simulation.

Table 4 – Experimental Information

Point world_x world_y world_z heading
Initial 0 m 0 m -3 m 0◦
Final 10 m 10 m -8 m 180◦

The initial depth is set to 3 m, to make sure the vehicle is underwater since
uwv_dynamic_model does not take the surface in account. For each method proposed
one simulation case is tested. In order to explore the complexity of the 6 DOF model, the
simulation actuates 4 DOF simultaneously. The initial pose and setpoint pose are in Table
4. The control algorithm is not of interest in the present work, therefore its performance
and the path to go from the initial to final point are not analyzed.

4.2.2.1 Results

Figures 8 and 9 show the results of simulations for methods 1 and 2 respectively.

For Method 1, shown in Figure 8, the simulation diverges significantly from
uwv_dynamic_model. The angular movement is highly affected, leading the control chain
to react abruptly, which in turn contributes to the oscillatory movement. One can notice
that when the angular velocities are small the simulation and the expected model match.
Other simulations indicate that this is also true if only one DOF is actuated.

For Method 2, shown in Figure 9, the velocities in simulation match the ones of
uwv_dynamic_model. The compensation is done directly on the control efforts, without
delay and do not cause the oscillations seen with method 1.

However, if one needs to interact with other elements in the scene (collision,
manipulation), method 2 would not be able to compensated their effect. The way forward
in this case is to modify the simulation engine, which is open source, to give access to all
forces and torques before they are applied. This way, the efforts could be modified before
physics update, and the compensated effort would be applied. This solution would also
avoid the manipulation of individual forces and torques, like it is done in method 2.

Results show that while method 1 is not able to match the dynamic of an UUV,
method 2 has body frame velocities similar with the expected uwv_dynamic_model.
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Figure 8 – Method 1: Results of velocities and efforts expressed in body frame: (a) linear
velocities, (b) forces, (c) angular velocities, (d) torques

We conclude that it is required to compensate for added mass effects before the
simulation step. Delayed compensation has led to a highly oscillatory movement in the
simulation.
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Figure 9 – Method 2: Results of velocities and efforts expressed in body frame: (a) linear
velocities, (b) forces, (c) angular velocities, (d) torques
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5 Parameters Identification for Underwater
Vehicles

This Chapter discuss the problematic of identifying the dynamical model parameters
of an underwater vehicle. Section 5.1 is a review of previous works done on parameters
identification of UUV and Section 5.2 explores in details the parameters identification
methods for the decoupled, single-DOF model represented by Equation 3.12, namely the
least square method and the adaptive identifier.

5.1 Literature Review
Determining the parameters of the dynamical model of an underwater vehicle is a

complex and laborious activity, due the non-linear characteristic and the coupled terms
present in the model. Several techniques of parameters identification has been presented
in the literature. The techniques can be summarized in two categories, online or offline,
depending on in which moment the identification method is applied, during vehicle’s
operation or in a post-processing step using logged data. The majority of the works focused
on the identification of parameters for the uncouple, single-DOF model. Nevertheless, more
recent work concentrate on the parameters identification of the coupled six-DOF model.

The offline parameters identification techniques present in the literature either use
Computational Fluid Dynamics (CFD) softwares or are based in experimental logged data.

Software employed in the computation of hydrodynamical terms, like WAMIT [48]
and Star-CCM+ [49] were employed in previous work [50], [51]. In [50], WAMIT was used
to compute the added mass matrix and Star-CCM+ was used to determine the damping
term in a remotely operated vehicle, while [51] also employed WAMIT to compute the
added mass matrix of a ROV.

Regarding the offline methods that utilize experimental logged data, it is possible
to distinguish between those that use the UUV in a passive way, i.e. where actuation
and/or sensing are external to the vehicle, of those who use the UUV in an active way, by
employing its embedded propellers and sensors for actuating and collecting data. Among
the passive methods, free-decay tests using ropes and/or springs fixed to the UUV are the
more common, [52], [53]. Mechanisms for planar movement are also utilized for actuating
and collecting data of underwater vehicles [54].

However, the offline methods based on experimental logged data, where the UUV is
actuated, appear among the more mentioned in the literature. A common offline parameters
identification technique is the least square method, which proven efficacy showed in several
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works, [55], [17], [19], [56], [57], [40], including coupled models, [58], [37]. That way, this
technique is usually used in evaluation of new parameters identification methods.

Regarding online parameters identification techniques, previous works used neural
network and machining learning, Kalman filters, recursive least square and adaptive
techniques. In [59], a neural network was used to identify the damping effect of a ROV,
[60] also used a neural network to define the dynamic behavior of an UUV, [61] compared
several machine learning techniques in order to identify the damping effect of an AUV and
[62] used support vector machine (SVM) to identify the parameters of dynamic model.

Among the works that employed Kalman filters, [63] used a dual unscented Kalman
filter (DUKF) in a vision guided ROV, [64] applied extended Kalman filter (EKF) in an
AUV, [65] used an observer Kalman filter identification (OKID) to identify the parameters
of a simplified model of an AUV, and [66] applied three Kalman filter techniques to identify
the six DOF model of an AUV.

In [67], a recursive least square method was used for the parameters identification
of an AUV.

Among the adaptive parameters identification techniques, [18] used it in a ROV
to identify the parameters of a decoupled single-DOF model, [68] employed an adaptive
identification method altogether with a fuzzy controller, [69] applied an adaptive parameter
identifier to determine the parameters of a rotation rigid body, [20] proposed an adaptive
technique to identify the parameters of a coupled 6-DOF model of an UUV, [38] compared
adaptive techniques with least square method to identify the damping parameters of
an AUV and [40] used an adaptive techique altogueter with artificial fidutial markes to
identify the model’s parameters of an AUV.

Among the several techniques of parameters identification for the dynamical model
available, the choose one is the adaptive technique for the uncoupled single-DOF dynamical
model presented by [18]. The reasons for that choice are:

1. Convergence proof using Lyapunov-like analysis,

2. It can be applied online,

3. Data of υ̇i(t) is not required, once angular acceleration is usually not instrumented,
[70].

Simultaneously, the least square method are applied in order to compare the results.
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5.2 1-DOF Model Identification

5.2.1 Least-Squares Parameters Identification

The least square is the classical method of parameters identification, [71]. In this
work, it is applied using experimental data of the vehicle’s movement in one DOF, requiring
data of υ̇i(t), υi(t) e ui(t).

Considering ˙̄Vi = [υ̇i(t1) · · · υ̇i(tn)]1×n e F̄i = [fi(t1) · · · fi(tn)]4×n being the data of
n samples, Equation 3.14 results in

˙̄Vi = ΦT
i F̄i , (5.1)

that can be resolved using the pseudo-inverse, case F̄i is full-rank, by

Φi = ( ˙̄ViF̄i
T (F̄iF̄i

T )−1)T . (5.2)

5.2.2 Adaptive Parameters Identification

In the adaptive parameters identification method presented in [18], given 3.14, an
adaptive identifier is given by

˙̂v(t) = Φ̂T f̂(t)− am∆υ(t) , (5.3)

where f̂(t) = [u(t); υ̂(t)|υ̂(t)|; υ̂(t); 1]4×1, υ̂(t) represents the estimation of velocity, Φ̂(t)
represents the lumped parameters Φ and am > 0 is the gain. The terms representing the
coordinated errors are given by

∆υ(t) = υ̂(t)− υ(t) ,
∆υ̇(t) = ˙̂υ(t)− υ̇(t) ,
∆Φ(t) = Φ̂(t)− Φ ,

∆Φ̇(t) = ˙̂Φ(t); Φ̇ = 0.

(5.4)

The update law is defined as

∆Φ̇(t) = −Λ∆υ(t)f̂(t) , (5.5)

where Λ = diag[λi], for i = 1 · · · 4, with λi > 0.

The Lyapunov-like lemma, [72], can be used to demonstrate the identifier’s stability.
The Lyapunov-like lemma states that if a scalar function V (x, t) satisfies the conditions

• V (x, t) is lower bounded,

• V̇ (x, t) is negative, and semi-definite
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• V̇ (x, t) is uniformly continuous in time, i.e, V̈ (x, t) is bounded,

then limt→∞ V̇ (x, t) = 0.

Considering the Lyapunov function candidate as

V (∆υ(t),∆Φ(t)) = ∆υ(t)2 + ∆Φ(t)T Λ−1∆Φ(t) . (5.6)

Using Equations 3.14, 5.3, 5.4, the time derivative of Equation 5.6 is

V̇ (∆υ(t),∆Φ(t)) = 2∆υ(t)∆υ̇(t) + 2∆Φ(t)T Λ−1∆Φ̇(t)
= 2∆υ(t)( ˙̂υ(t)− υ̇(t)) + 2∆Φ(t)T Λ−1∆Φ̇(t)
= 2∆υ(t)(Φ̂T (t)f̂(t)− am∆υ(t)− ΦTf(t)) + 2∆Φ(t)T Λ−1∆Φ̇(t)
= 2∆υ(t)((∆ΦT (t) + ΦT )f̂(t)− am∆υ(t)− ΦTf(t)) + 2∆Φ(t)T Λ−1∆Φ̇(t)
= −2am∆υ(t)2 + 2∆υ(t)ΦT (f̂(t)− f(t))+

2∆υ(t)∆ΦT (t)f̂(t) + 2∆Φ(t)T Λ−1∆Φ̇(t) .
(5.7)

Using Equation 5.5, then 5.7 becomes

V̇ (∆υ(t),∆Φ(t)) = −2am∆υ(t)2 + 2∆υ(t)ΦT (f̂(t)− f(t))+
2∆υ(t)∆ΦT (t)f̂(t)− 2∆ΦT (t)Λ−1Λ∆υ(t)f̂(t)

= −2am∆υ(t)2 + 2∆υ(t)ΦT (f̂(t)− f(t))+
2∆υ(t)∆ΦT (t)f̂(t)− 2∆υ(t)∆ΦT (t)f̂(t)

= −2am∆υ(t)2 + 2∆υ(t)ΦT (f̂(t)− f(t))
= −2am∆υ(t)2 + 2µ∆υ(t)2 + 2β∆υ(t)(υ̂(t)|υ̂(t)| − υ(t)|υ(t)|) .

(5.8)

Examining the term ∆υ(t)(υ̂(t)|υ̂(t)| − υ(t)|υ(t)|), it is perceived that when υ̂(t) >
υ(t) implies in ∆υ(t) > 0 and (υ̂(t)|υ̂(t)| − υ(t)|υ(t)|) > 0. When υ̂(t) < υ(t), it implies in
∆υ(t) < 0 and (υ̂(t)|υ̂(t)| − υ(t)|υ(t)|) < 0. In any case, it results in ∆υ(t)(υ̂(t)|υ̂(t)| −
υ(t)|υ(t)|) > 0.

Since am > 0, µ < 0 and β < 0, it implies that V̇ (∆υ(t),∆Φ(t)) ≤ 0, V (∆υ(t),∆Φ(t)) ≤
V (∆υ(0),∆Φ(0)), and therefore, ∆υ(t) and ∆Φ(t) are bounded. Since Φ is constant, Φ̂(t)
is bounded.

As Equation 3.14 is bounded-input bounded-state (BIBS) stable, [18], and given
that u(t) is bounded, then υ(t) and υ̂(t) are also bounded. Consequently υ̇(t), ˙̂υ(t) and
∆υ̇(t) are bounded.

V̈ (∆υ(t),∆Φ(t)) can be determined by making use of ˙|x| = ẋ |x|
x
, as

V̈ (∆υ(t),∆Φ(t)) = (−4am + 4µ)∆υ(t)υ̇(t) + 2β∆υ̇(t)(υ̂(t)|υ̂(t)| − υ(t)|υ(t)|)+
2β∆υ(2 ˙̂υ(t)|υ̂(t)| − 2υ̇(t)|υ(t)|) . (5.9)
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Given that V̈ (∆υ(t),∆Φ(t)) is composed by sums and products of bounded elements,
it is therefore bounded.

With the three conditions satisfied, V ≥ 0, V̇ ≤ 0 and V̈ bounded, the lemma
implies that limt→∞ V̇ (∆υ(t),∆Φ(t)) = 0 and consequently limt→∞∆υ(t) = 0. As f̂(t) is
bounded, it can be concluded from Equation 5.5 that limt→∞∆Φ̇(t) = 0.

To summarize, all signals stay bounded, the state error, ∆υ(t), and the time-
derivative of the parameters error,∆Φ̇(t), converge to zero. Even though the parameters
error, ∆Φ(t), is bounded, it can not be concluded that it converges to zero as well. However,
it is stated in the literature, [72], that the identified parameters can converge to its true
values given a sufficiently frequency rich input signal u(t).
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6 Experimental Results

This chapter presents the experimental setup, results and discussion of the dynam-
ical model parameters identification using the adaptive identifier and the least-square
method, for four DOF: surge, sway, heave and yaw. The experiments were conduct with
the two FlatFish prototypes constructed. The first set of experiments was performed in
a saltwater test basin using the FlatFish construct in Germany, while the second set of
experiments were performed in the sea using the FlatFish vehicle assembled in Brazil.

In sequence, the identified parameters’ performance is analyzed considering a multi
DOF movement of the vehicle, taking in account three simulated vehicles: a simplified dy-
namical model, a complete dynamical model and the Gazebo simulation with compensated
efforts, presented in Section 4.2.1 as method 2.

6.1 Experiments in Basin

6.1.1 Experimental Setup

The first set of experiments were conduct in the 23m× 19m× 8m saltwater test
basin of the Maritime Exploration Hall at DFKI Robotics Innovation Center (RIC), located
in Bremen, Germany [73], on June 10, 2017. The test basin enables an operation without
disturbances as water current or waves, allows a good visibility of the vehicle underwater
and facilitates the launch and recovery of the AUV through the crane system.

The FlatFish AUV, described in Chapter 2 was used. Two experiments were
performed for each controllable DOF: surge, sway, heave and yaw. The first dataset
was used for offline parameters identification while the second dataset was intended for
cross-validation of the identified parameters. Each experiment consists in a controlled
sinusoidal movement, chosen according previous studies [39], [74], [72]. It enables a wide
range of velocity for a long period of time while permits the vehicle to move in a safe
volume, avoiding possible collision with the bottom and walls of the basin. The sinusoidal
parameters were set to generate slow change in the control commands, in order to consider
the steady state thruster model.

At the beginning of each experiment, FlatFish was firstly positioned at ∼3m depth.
In sequence, it performed the controlled sinusoidal movement in the DOF of interest while
keeping position of the remaining DOFs. The control chain, presented in Section 2.4, was
feed with the sinusoidal signal as position set-point. Figure 10 shows FlatFish during one
experiment.

The parameters of sinusoidal signals, as the duration for each DOF’s experiment,
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are presented in Table 5 for the parameters identification dataset and Table 6 for the
cross-validation dataset.

Linear velocity data provided by DVL, angular velocity provided by IMU and
thruster’s rotation speed were recorded. Each sample was timestamped with the mea-
surement time, and once the sensors data were directly used in both identification and
cross-validation processes, no delay were perceived or considered.

The Saviztz-Golay filter described in Appendix A, was used in order to estimate
the vehicle’s linear and angular acceleration from the respective velocity data. It was used
a filter with 33 samples, being the derivative related to the central sample and using a
polynomial of order 3, for all dataset. The computed acceleration was used in the least
square method of parameters identification.

With the parameters identified from the first experiment, a numerical simulator,
the uwv_dynamic_simulator described in Section 4.2.2, was run using those parameters
and the logged effort profile of the cross-validation experiment. The error between the
velocity predicted by the identified model and the measured velocity during this process is
reported as the Mean Absolute Error (MAE), given by

MAE =
∑n

i=1 |vmodeli − vmeasuredi
|

n
. (6.1)

Figure 10 – FlatFish performing experiments in test basin

6.1.2 Results

The adaptive identifier requires initial parameters to be defined at the start of the
identification process. In order to explore the capability of the adaptive identifier, it was
considered no a priori knowledge of the parameters. In such a case, the adaptive identifier
was set with initial inertia term equal 100Kg and zero for the remaining terms for the
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Table 5 – Parameters Identification Experiments

DOF Duration Closed Loop Position Control
Amplitude Frequency

Surge 07:10 min 1 m 0.2 rad/s
Sway 05:56 min 1 m 0.2 rad/s
Heave 05:13 min 1 m 0.2 rad/s
Yaw 05:32 min 0.5 rad 0.1 rad/s

Table 6 – Parameters Cross-Validation Experiments

DOF Duration Closed Loop Position Control
Amplitude Frequency

Surge 06:49 min 1 m 0.25 rad/s
Sway 05:45 min 1 m 0.25 rad/s
Heave 05:32 min 1 m 0.25 rad/s
Yaw 04:49 min 0.5 rad 0.2 rad/s

four DOF analyzed. The inertia term could not be initialized as zero, once its inverse
determines the lumped parameters as shown in Table 3.

The gains used were set empirically and are presented in Table 7. Appendix C
explores the influence of gain in the adaptive identifier. An Euler integrator was used in
the adaptive identifier and no smooth filter was applied in the output values.

Table 7 – Adaptive Identifier Gains Used in Basin Dataset

DOF am λ1 λ2 λ3 λ4

Surge 1 2e-4 5e-1 5e-1 0
Sway 1 2e-4 5e-1 5e-1 0
Heave 1 1.5e-4 5e-1 5e-1 5e-2
Yaw 1 1e-2 1e4 5e0 0

The dataset used in parameters identification (υi, υ̇i and ui), the parameters
outputted by adaptive identifier and its velocity errors (∆υ) are shown in Appendix B.1.

The model’s parameters provided by adaptive identifier and least-square methods,
as well as the MAE obtained from the cross-validation dataset are presented in Table 8.

Graphs of the cross-validation experiments show the measured velocity altogether
with the model’s velocity performed with the parameters presents in Table 8, being the
Figures 11, 12, 13, 14 representing surge, sway, heave and yaw DOF respectively.

From Table 8, the models whose parameters were identified via adaptive identifier
performed slightly better than the ones that used the least-square method for surge, heave
and yaw, based on the values of mean absolute error. Both methods identified similar
values for the inertia parameters for surge, sway and heave, with a variation of less than
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Table 8 – Adaptive and Least-Squares Parameters, Basin Dataset

DOF Method Inertia L. Damping Q. Damping Buoyancy MAE

Surge Adaptive 763.12 74.77 18.03 0 0.0116 m/s
LS 797.55 117.45 -381.79 0 0.0123 m/s

Sway Adaptive 1062.28 134.86 34.05 0 0.0141 m/s
LS 1035.16 68.14 335.81 0 0.0097 m/s

Heave Adaptive 1269.13 231.06 39.88 15.59 0.0156 m/s
LS 1239.34 294.64 -578.74 12.66 0.0176 m/s

Yaw Adaptive 184.43 2.36 227.92 0 0.0089 rad/s
LS 233.26 3.72 167.40 0 0.0164 rad/s

5%. The FlatFish has about 275kg of dry mass. It mean that FlatFish has an added mass
of about 500kg in surge, 775kg in sway and 975kg in heave. Those values seem to be
reasonable since the cross section area of surge, sway and heave are respectively ∼ 0.525m2,
∼ 1.1m2 and ∼ 2.31m2. As the added mass is related to the water that is accelerated by
the AUV while it accelerates, the smaller the cross section area, the smaller the added
mass.

The damping terms seems to have a combined effect. The two damping parameters
provided by both methods could not be individually compared, since a damping term
has different values depending on the identification method used for the same DOF. For
the surge and heave DOF, the least-square method provided negative parameters for the
quadratic damping, which does not make physical sense once it implies that this individual
damping term would apply energy to the system.

In Figure 25 one can see at second 70 for example, what is believed to be the
reason for the negative damping. At that moment, the force is near zero, about to flip from
positive to negative value while the acceleration has already a negative value, meaning that
the thrusters was still applying a positive force when the vehicle starts its deceleration.
For the least square method, the damping term was adding a negative force and causing
vehicle’s deceleration despite the positive force provided by thruster. The reason for this
timing difference is not clear, since timestamped measured data was direct used for velocity
and to derive acceleration, as well to determine force from thurster’s rotation speed. It is
believed that either unmodeled thruster’s dynamics or ignored vehicle’s dynamic may be
the cause for the timing offset between force and acceleration.

Nevertheless, due the bounded region of operation, the combination of both damping
parameters has an equivalent result for both identification methods, based on the graphics
and MAE resultant of the cross-validation experiment.

A graphical overview of Figures 11, 12, 13 shows that for surge, sway and heave
DOF, both parameters identifiers have similar results. The yaw DOF in Figure 14 performed
worst than the others DOFs. It is believed that the small amplitude of torque and velocity



Chapter 6. Experimental Results 51

in the identification dataset show in Figure 31, of ∼ 1.5Nm and ∼ 0.05rad/s respectively,
was not enough to fully capture the dynamic effects of an operation with amplitudes of
∼ 5Nm for torque and ∼ 0.1rad/s for velocity observed in Figure 14.
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Figure 11 – Cross validation in surge performed in basin: (a) Velocity, full experiment, (b)
Velocity, 60s magnification, (c) Applied force, full experiment, (d) Applied
force, 60s magnification

6.2 Experiments in Bay

6.2.1 Experimental Setup

The second set of experiments were conduct in Marina de Aratu, located in Aratu
bay, Bahia, Brazil, on December 5, 2017. Figure 15 shows in a map the location where
the experiments were performed. The test site has relatively low perturbations, such as
waves and sea currents, and an average depth of 5m, [75]. The experiments were conduct
from Lady Catarina, a catamaran equipped with laboratory infrastructure that allowed
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Figure 12 – Cross validation in sway performed in basin: (a) Velocity, full experiment, (b)
Velocity, 60s magnification, (c) Applied force, full experiment, (d) Applied
force, 60s magnification

FlatFish’s operation. The vessel was docked in the Marina with a reserved area for FlatFish,
as shown in Figure 16. Figure 17 shows FlatFish being prepared for experiments.

The experimental setup described in Section 6.1.1 was applied for identification
and cross-validation experiments in the bay location as well, with different sinusoidal
parameters. The parameters of input signals, as the duration for each DOF’s experiment,
are presented in Table 9 for the parameters identification dataset and Table 10 for the
cross-validation dataset.

The sinusoidal parameters were set with the purpose of generating slow change in
the control commands, in order to consider the steady state thruster model. Nevertheless,
the vehicle’s control chain performed improperly causing abrupt and punctual changes in
the control commands, as can be seen in Figure 18 for example.
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Figure 13 – Cross validation in heave performed in basin: (a) Velocity, full experiment, (b)
Velocity, 60s magnification, (c) Applied force, full experiment, (d) Applied
force, 60s magnification

6.2.2 Results

The adaptive identifier requires initial parameters to be defined at the start of the
identification process. In order to explore the capability of the adaptive identifier, it was
considered no a priori knowledge of the parameters. In such a case, the adaptive identifier
was set with initial inertia term equal 100Kg and zero for the remaining terms for the
four DOF analyzed. The inertia term could not be initialized as zero, once its inverse
determines the lumped parameters as shown in Table 3.

The gains used were set empirically and are presented in Table 11. Appendix C
explores the influence of gain in the adaptive identifier. An Euler integrator was used in
the adaptive identifier and no smooth filter was applied in the output values.

The dataset used in parameters identification (υi, υ̇i and ui), the parameters



Chapter 6. Experimental Results 54

0 50 100 150 200 250
-0.2

-0.1

0

0.1

0.2

Time (s)

V
el

oc
ity

 (
ra

d/
s)

Cross validation - Yaw

measured
adap model
ls model

(a)

60 70 80 90 100 110 120
-0.2

-0.1

0

0.1

0.2

Time (s)

V
el

oc
ity

 (
ra

d/
s)

Cross validation - Yaw

measured
adap model
ls model

(b)

0 50 100 150 200 250
-10

-5

0

5

10

Time (s)

T
or

qu
e 

(N
 m

)

Cross validation - Yaw

(c)

60 70 80 90 100 110 120
-10

-5

0

5

10

Time (s)

T
or

qu
e 

(N
 m

)

Cross validation - Yaw

(d)

Figure 14 – Cross validation in yaw performed in basin: (a) Velocity, full experiment, (b)
Velocity, 60s magnification, (c) Applied torque, full experiment, (d) Applied
torque, 60s magnification

provided by adaptive identifier and its velocity errors (∆υ) are shown in Appendix B.2.

The model’s parameters provided by adaptive identifier and least-square methods,
as well as the MAE obtained from the cross-validation dataset are presented in Table 12.

Graphs of the cross-validation experiments show the measured velocity altogether
with the model’s velocity performed with the parameters presents in Table 12, being the
Figures 18, 19, 20, 21 representing surge, sway, heave and yaw DOF respectively.

From Table 12, the models whose parameters were identified via adaptive identifier
performed slightly better than the ones that used the least-square method for sway and
yaw, based on the values of mean absolute error. Both methods identified similar values
for the inertia parameters for sway, heave and yaw. The FlatFish has about 275kg of dry
mass. It mean that FlatFish has an added mass of about 525kg in surge, 795kg in sway
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Figure 15 – Test site located at Marina de Aratu in Aratu bay (Google Maps)

Table 9 – Parameters Identification Experiments

DOF Duration Closed Loop Position Control
Amplitude Frequency

Surge 04:57 min 2 m 0.2 rad/s
Sway 04:45 min 2 m 0.2 rad/s
Heave 04:44 min 1 m 0.15 rad/s
Yaw 04:59 min 1 rad 0.2 rad/s

Table 10 – Parameters Cross-Validation Experiments

DOF Duration Closed Loop Position Control
Amplitude Frequency

Surge 04:44 min 2 m 0.15 rad/s
Sway 05:07 min 2 m 0.15 rad/s
Heave 04:56 min 1 m 0.13 rad/s
Yaw 05:06 min 1 rad 0.15 rad/s

and 1075kg in heave. Those values of inertia are equivalents with the inertia parameters
found for the German vehicle, shown in Table 8.

The damping terms seems to have a combined effect. In general, the two damping
parameters provided by both methods could not be individually compared, with an
exception of the linear damping in surge. For sway, the least-square method provided a
negative parameter for the quadratic damping, which does not make physical sense once it
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Figure 16 – Catamaran used as laboratory, docked at Marina de Aratu

Figure 17 – FlatFish preparing for experiments in bay

implies that this individual damping term would apply energy to the system.

In Figure 35 one can see at second 70 for example, what is believed to be the
reason for the negative damping. At that moment, the force is near zero, about to flip from
positive to negative value while the acceleration has already a negative value, meaning that
the thrusters was still applying a positive force when the vehicle starts its deceleration.
For the least square method, the damping term was adding a negative force and causing
vehicle’s deceleration despite the positive force provided by thruster. The reason for this
timing difference is not clear, since timestamped measured data was direct used for velocity
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Table 11 – Adaptive Identifier Gains Used in Bay Dataset

DOF am λ1 λ2 λ3 λ4

Surge 1 2e-4 5e-1 5e-1 0
Sway 1 2e-4 5e-1 5e-1 0
Heave 1 1.5e-4 5e-1 5e-1 5e-2
Yaw 1 5e-4 5e1 5e-1 0

Table 12 – Adaptive and Least-Squares Parameters, Bay Dataset

DOF Method Inertia L. Damping Q. Damping Buoyancy MAE

Surge Adaptive 758.66 94.32 27.27 0 0.0205 m/s
LS 854.38 93.32 53.86 0 0.0163 m/s

Sway Adaptive 1081.31 147.11 51.50 0 0.0225 m/s
LS 1061.07 189.15 -445.32 0 0.0316 m/s

Heave Adaptive 1381.98 218.75 39.88 33.98 0.0201 m/s
LS 1301.02 169.02 235.29 30.59 0.0094 m/s

Yaw Adaptive 304.27 11.24 236.12 0 0.0225 rad/s
LS 312.52 27.60 152.43 0 0.0316 rad/s

and to derive acceleration, as well to determine force from thurster’s rotation speed. It is
believed that either unmodeled thruster’s dynamics or ignored vehicle’s dynamic may be
the cause for the timing offset between force and acceleration.

Nevertheless, due the bounded region of operation, the combination of both damping
parameters has an equivalent result for both identification methods.

The buoyancy of the Brazilian vehicle is about 30N , twice that of the German
FlatFish with buoyancy of ∼ 15N . It is reasonable that each vehicle has its own value of
buoyancy due a fine trim performed for each test location.

A graphical overview of Figures 18, 20, 21 shows that for surge, heave and yaw, both
parameters identifiers have similar results. The sway DOF in Figure 19 performed worst
than the others DOFs. It is believed that a current due to tide change may be responsible
for affecting the expected velocity provided by the identified model’s parameters.

The abrupt and punctual changes in the control commands caused by malfunctions
in the control chain were not a problem for both the identification and the cross-validation
procedure. Instead, they have shown to enrich the analyses, specifically for the cross-
validation dataset. In those cases, it is observed that the models using the identified
parameters behave according the measured data for those punctual and abrupt changes.
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Figure 18 – Cross validation in surge performed in bay: (a) Velocity, full experiment, (b)
Velocity, 60s magnification, (c) Applied force, full experiment, (d) Applied
force, 60s magnification

6.3 Multi DOF Actuation
With the parameters of the simplified dynamic model identified for four DOF of

FlatFish and the shown performance of the given model when the vehicle actuates in one
DOF, the question of how this model’s parameters behaves in a multi DOF movement
of the vehicle arises. This section explores how the simplified dynamic model and the
complete dynamic model, both configured with the same identified parameters, behaves
compared with measured velocities in a multi DOF movement of FlatFish. The complete
dynamic model is played both by a dedicated library for UUV (uwv_dynamic_model) and
by Gazebo simulation adapted to consider the added mass effect.
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Figure 19 – Cross validation in sway performed in bay: (a) Velocity, full experiment, (b)
Velocity, 60s magnification, (c) Applied force, full experiment, (d) Applied
force, 60s magnification

6.3.1 Experimental Setup

The experiments were conduct in the same saltwater test basin of DFKI used for
model’s parameters identification, on June 10, 2017.

The same FlatFish AUV used in the identification procedure in basin was used.
One experiment was performed where all the four controllable DOF were actuated at
the same time, in controlled sinusoidal movements. It enables a wide range of velocity
for a long period of time while permits the vehicle to move in a safe volume, avoiding
possible collision with the bottom and walls of the basin. The sinusoidal parameters were
set to generate slow change in the control commands, in order to consider the steady state
thruster model.

At the beginning of each experiment, FlatFish was firstly positioned at ∼3m depth.



Chapter 6. Experimental Results 60

0 50 100 150 200 250

-0.15

0

0.15

Time (s)

V
el

oc
ity

 (
m

/s
)

Cross validation - Heave

measured
adap model
ls model

(a)

240 250 260 270 280 290

-0.15

0

0.15

Time (s)

V
el

oc
ity

 (
m

/s
)

Cross validation - Heave

measured
adap model
ls model

(b)

0 50 100 150 200 250

-50

0

50

Time (s)

F
or

ce
 (

N
)

Cross validation - Heave

(c)

240 250 260 270 280 290

-50

0

50

Time (s)

F
or

ce
 (

N
)

Cross validation - Heave

(d)

Figure 20 – Cross validation in heave performed in bay: (a) Velocity, full experiment, (b)
Velocity, 60s magnification, (c) Applied force, full experiment, (d) Applied
force, 60s magnification

In sequence, it performed the controlled sinusoidal movement in four DOF. The control
chain, presented in Section 2.4, was feed with four sinusoidal signal as position set-point,
one for each DOF.

The parameters of sinusoidal signals, as the duration of the experiment, are pre-
sented in Table 13.

Table 13 – Multi DOF Experiment

DOF Duration Closed Loop Position Control
Amplitude Frequency

Surge

05:42 min

1 m 0.3 rad/s
Sway 1 m 0.25 rad/s
Heave 1 m 0.2 rad/s
Yaw 0.5 rad 0.2 rad/s
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Figure 21 – Cross validation in yaw performed in bay: (a) Velocity, full experiment, (b)
Velocity, 60s magnification, (c) Applied torque, full experiment, (d) Applied
torque, 60s magnification

Linear velocity data provided by DVL, angular velocity provided by IMU and
thruster’s rotation speed were recorded. Each sample was timestamped with the mea-
surement time, and once the sensors data were directly used, no delay were perceived or
considered.

The logged efforts profile was used to feed three numerical simulators:

• Simplified model, given by Equation 3.12,

• Complete model, given by Equation 3.10,

• Gazebo simulation with compensated efforts, given by Equations 4.1 and 4.15.

The model’s parameters identified via the adaptive identifier, provided in Table 8,
were used. For roll and pitch DOF, whose identification procedure could not be performed,
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their parameters were arbitrarily defined. The inertia matrix, linear and quadratic damping,
used in the three simulations, are described respectively by

M =



763.12 0 0 0 0 0
0 1062.28 0 0 0 0
0 0 1269.13 0 0 0
0 0 0 200 0 0
0 0 0 0 200 0
0 0 0 0 0 184.43


, (6.2)

DL =



74.77 0 0 0 0 0
0 134.86 0 0 0 0
0 0 231.06 0 0 0
0 0 0 200 0 0
0 0 0 0 200 0
0 0 0 0 0 2.36


, (6.3)

DQ =



18.03 0 0 0 0 0
0 34.05 0 0 0 0
0 0 39.88 0 0 0
0 0 0 200 0 0
0 0 0 0 200 0
0 0 0 0 0 227.92


. (6.4)

The resultant buoyancy is 15.59N .

6.3.2 Results

Figures 22 and 23 show body frame velocities and efforts, for linear and angular
DOF, respectively, of FlatFish’s measured data during experiment, altogether with simple
model, complete model and Gazebo simulation. Table 14 shows the mean absolute error,
given by Equation 6.1, for all six DOF of the three simulated models.

It is perceived that for surge, sway and yaw DOF, the behavior of all models’
velocities mismatch vehicle’s measurement, being those DOF with the higher MAE in Table
14. Heave is the DOF with more similarity between model’s velocities and measurements,
while roll and pitch DOF shows small amplitudes of movement but still with discrepancy
between measurement and model’s velocities.

Heave DOF does not show to be coupled with the others three controllable DOFs.
As the vehicle performed with small amplitudes in roll and pitch, velocities in heave of
models were evenness with measurement. It is believed that the highly coupled movement
in surge, sway and yaw contributes to the model’s inability to perform with a similar
behavior to the real vehicle in these DOFs.



Chapter 6. Experimental Results 63

Table 14 – Mean Absolute Error in Multi DOF Experiment

DOF Simple model Complete model Gazebo
Surge 0.0391 m/s 0.0498 m/s 0.0496 m/s
Sway 0.0264 m/s 0.0246 m/s 0.0245 m/s
Heave 0.0198 m/s 0.0200 m/s 0.0207 m/s
Roll 0.0126 rad/s 0.0124 rad/s 0.0125 rad/s
Pitch 0.0124 rad/s 0.0110 rad/s 0.0112 rad/s
Yaw 0.0489 rad/s 0.0492 rad/s 0.0493 rad/s

For the simplified model, where the Coriolis and centripetal term is ignored, it
is clear to understanding the reason of such mismatch. Nevertheless, for the complete
model, where the Coriolis terms are considered, it can be concluded that the identified
parameters for a simplified model does not consider all the necessary dynamics for such
coupled movement. It raises the question if parameters provided by a complete model’s
parameters identification method would result in a more reliable simulation for the multi
DOF case. Still, it is important to remark in Figures 22 and 23 the akin behavior of the
Gazebo simulation with compensated efforts compared to the complete model. It indicates
the ability of Gazebo simulation to reproduce the dynamics of a real UUV in case the
complete model’s parameters were correctly identified, which can be objective of a future
work.
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Figure 22 – Multi DOF actuation in basin, linear DOF: (a) Velocity surge, (b) Force surge,
(c) Velocity sway, (d) Force sway, (e) Velocity heave, (f) Force heave
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Figure 23 – Multi DOF actuation in basin, angular DOF: (a) Angular velocity roll, (b)
Torque roll, (c) Angular velocity pitch, (d) Torque pitch, (e) Angular velocity
yaw, (f) Torque yaw
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7 Conclusion

This work presented important results regarding parameters identification and
simulation of an AUV. In introduction, the importance of simulation environment during
the development of UUV is explored, altogether with the necessity of identifying the
parameters of the dynamic model, not only to improve the simulation but also to enhance
model-based controllers, state estimator and model-based fault detection. In the sequence,
a description of the FlatFish AUV is presented, in which the sensors, actuators, software
and controller employed were presented.

The dynamical model of an underwater vehicle were shown, in which the main
hydrodynamic terms, such as added mass, damping and gravitational effects were presented.
Considerations and simplifications were made in order to obtain a decoupled single DOF
dynamical model.

The simulation of underwater robots were also explored. It was perceived a rep-
resentation lack of the added mass effect in the main robotic simulators in existence.
The added mass, although being considered in dedicated marine simulators, could not
be represented in widespread robotic simulators such Gazebo, due the limitations of the
physic engine. A method to overcome that constrain was presented and have already been
published in a paper [76].

In the following, techniques for parameters identification used in underwater vehicles
were studied. The least square method and the adaptive identifier were formulated for the
decoupled single DOF model. A stability analysis of the adaptive identifier was defined.

Regarding experimental results, the techniques for parameters identification were
applied in two FlatFish vehicles, with data collected from experiments performed in
two different location, a saltwater basin located in Bremen, Germany, and Aratu bay,
nearby Salvador, Brazil. Both techniques provided similar results in the cross-validation
experiments. The experiments performed in Aratu bay was subjected to tide movement,
causing the performance of identification techniques to be not as good as the ones performed
in basin. Nevertheless, the model’s parameters showed a reliable behavior even in the
presence of abrupt control actuation.

In relation to the identified parameters themselves, the inertia terms have roughly
the same magnitude in a DOF, independent of the location or technique applied. The
damping terms seems to have a combing effect. The linear and quadratic damping param-
eters can not be direct compared, since for some experiments the least-square method
provided parameters with negative value, which would imply that these damping terms
were applying energy to the system, instead of removing it. The reasons for such effect
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would require more investigation. The buoyancy terms provided by both techniques are
equivalent and each vehicle have a different value of buoyancy due a fine trim performed
for the test location.

Considering the parameters identified for the four controllable DOF of FlatFish,
one more experiment was considered in order to analyze how good was the model when
performing a movement in four DOF at the same time with the vehicle. It was observed
that neither the simplified model, in which the Coriolis effect is ignored, nor the complete
model, in which the Coriolis effect is considered, are able to behave as the real vehicle
when using the identified parameters of the simplified model. For the multi DOF actuation
case, a parameters identification shall consider the complete model of the AUV.

Nevertheless, the complete model had a similar behavior with the Gazebo simulation
when considering the method used to compensate for the added mass. It shows the
effectiveness of the method proposed in 4.2.1. In case the parameters of the complete
model would had been identified, the Gazebo simulation would behave as the real vehicle.

7.1 Future works
Future works include the addition of water current measurement to be considered

during parameters identification. Additional tests to validate the method in the ocean,
which presents water current, could be performed.

Methods of parameters identification that consider the complete dynamical model
of an AUV should be studied and implemented. It is believed that with the complete
model’s parameters, the model, and the Gazebo simulation with the compensated effort,
could behave as the real vehicle when submitted to the same control effort, even in the
multi DOF actuation scenario.
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A Savitzky-Golay filter

In 1964, Savitzky and Golay proposed a method to smooth and derivate a set
of data based on least-square technique, [77]. The method, which is a Finite Impulse
Response (FIR) lowpass filter [78], consist in determining an one-dimension convolutional
kernel in order to fit a polynomial, or its derivative, in an evenly spaced dataset.

Previous works expanded the original formulation for computing the polynomial
fit, and its derivatives, to all positions in the kernel, [79], and expanding the polynomial
fitting to the multidimensional case, [80]. It’s applied in fields like electroencephalographic
[81], electrocardiography [82], image processing [83], [84] and analytical chemistry [85].

The one dimensional formulation used in this work is showed. Being a polynomial
model f(x) of order n given by

f(x) =
n∑

p=0
apx

p . (A.1)

Let the x coordinate of ith data point be xi = i,−m ≤ i ≤ m, being (2m + 1)
the window length, and the sampled value be gi. The values of ap are determined via
least-square in order to fit f(xi) to gi, i.e. by minimizing the total error

ε =
m∑

i=−m

(f(xi)− gi)2 . (A.2)

The solution can be determine by taking the matrix form of

f(xi) = gi (A.3)

and use the pseudo-inverse

Pa = g =⇒ P TPa = P Tg =⇒ a = (P TP )−1P Tg , (A.4)

where
a =

(
a0 . . . ap . . . an

)T
(A.5)

and P is the matrix which row multiplied by vector a gives the equivalent sample in vector
g, defined by

P :=



1 x−m . . . xp
−m . . . xn

−m
... ... ... ... ... ...
1 xi . . . xp

i . . . xn
i

... ... ... ... ... ...
1 xm . . . xp

m . . . xn
m


. (A.6)
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P is usually a non-square matrix, with more rows than columns, since it is required to use
a number of samples bigger than the order of the polynomial in order to avoid overfitting.

Writing the cth derivative of Equation A.1 in terms of the coefficients a and the
free variables as

∂cf

∂xc
=

n∑
p=c

ap
p!

(p−c)!x
p−c

step
, (A.7)

where the sampled data points are separated by step, [79], [80]. As the values on the right
hand side are constants multiplying the values of a, defined in Equation A.4, A.7 can be
written as

∂cf

∂xc
= s(P TP )−1P Tg

step
, (A.8)

where s is a vector with elements sp defined by

sp =

0 if 0 ≤ p < c

p!
(p−c)!x

p−c if c ≤ p ≤ n
(A.9)

The dot product of s(P TP )−1P T with the vector of samples g and dividing by step,
gives the cth derivative at the required x value.

In order to exemplify the Savitzky-Golay filter, the first derivative of a signal with
noise, specified in Table 15, is computed. The filter’s parameters are: a polynomial of
order 3, window size of 33 and first derivative related to the center point. The resultant
convolutional kernel s(P TP )−1P T is given by Table 16.

The original signal as well as the computed derivative is shown in Figure 24. It’s
perceived the filter’s capacity of computing the first derivative while removing the influence
of noise.

Table 15 – Parameters of signal with noise

Signal 0.3 ∗ sin(0.3 ∗ t)
Noise 0.01 ∗ sin(10 ∗ t) + 0.05 ∗ sin(3 ∗ t)
Step 0.25
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Table 16 – Savitzky-Golay filter’s kernel, polynomial order 3, 33 samples and first derivative
at the center point

Index -16 -15 -14 -13 -12
Coefficient 0.0107942 0.00507526 0.000332627 -0.00349878 -0.00648404
Index -11 -10 -9 -8 -7
Coefficient -0.00868824 -0.0101765 -0.0110138 -0.0112654 -0.0109963
Index -6 -5 -4 -3 -2
Coefficient -0.0102715 -0.00915624 -0.00771552 -0.00601445 -0.00411811
Index -1 0 1 2 3
Coefficient -0.0020916 0 0.0020916 0.00411811 0.00601445
Index 4 5 6 7 8
Coefficient 0.00771552 0.00915624 0.0102715 0.0109963 0.0112654
Index 9 10 11 12 13
Coefficient 0.0110138 0.0101765 0.00868824 0.00648404 0.00349878
Index 14 15 16
Coefficient -0.000332627 -0.00507526 -0.0107942
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Figure 24 – Signal with noise and its first derivative computed by Savitzky-Golay filter
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B Parameters Identification Dataset

This appendix shows the dataset collect during identification experiments, as well
as the model’s parameters and velocity error provided by the adaptive identifier.
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Figure 25 – Identification dataset for surge, done in basin: (a) Full trial, (b) 60s zoom in
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Figure 26 – Output of adaptive identifier for surge. am = 1, λ1 = 2e− 4, λ2 = 5e− 1, λ3 =
5e− 1, λ4 = 0: (a) Parameters, (b) Velocity error
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B.1.2 Sway
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Figure 27 – Identification dataset for sway, done in basin: (a) Full trial, (b) 60s zoom in
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Figure 28 – Output of adaptive identifier for sway. am = 1, λ1 = 2e− 4, λ2 = 5e− 1, λ3 =
5e− 1, λ4 = 0: (a) Parameters, (b) Velocity error
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B.1.3 Heave
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Figure 29 – Identification dataset for heave, done in basin: (a) Full trial, (b) 60s zoom in
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Figure 30 – Output of adaptive identifier for heave. am = 1, λ1 = 1.5e−4, λ2 = 5e−1, λ3 =
5e− 1, λ4 = 5e− 2 : (a) Parameters, (b) Velocity error
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B.1.4 Yaw
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Figure 31 – Identification dataset for yaw, done in basin: (a) Full trial, (b) 60s zoom in
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Figure 32 – Output of adaptive identifier for yaw. am = 1, λ1 = 1e − 2, λ2 = 1e4, λ3 =
5e0, λ4 = 0: (a) Parameters, (b) Velocity error
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B.2 Bay
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Figure 33 – Identification dataset for surge, done in bay: (a) Full trial, (b) 60s zoom in
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Figure 34 – Output of adaptive identifier for surge. am = 1, λ1 = 2e− 4, λ2 = 5e− 1, λ3 =
5e− 1, λ4 = 0: (a) Parameters, (b) Velocity error
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B.2.2 Sway
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Figure 35 – Identification dataset for sway, done in bay: (a) Full trial, (b) 60s zoom in
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Figure 36 – Output of adaptive identifier for sway. am = 1, λ1 = 2e− 4, λ2 = 5e− 1, λ3 =
5e− 1, λ4 = 0: (a) Parameters, (b) Velocity error
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B.2.3 Heave
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Figure 37 – Identification dataset for heave, done in bay: (a) Full trial, (b) 60s zoom in
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Figure 38 – Output of adaptive identifier for heave. am = 1, λ1 = 1.5e−4, λ2 = 5e−1, λ3 =
5e− 1, λ4 = 5e− 2 : (a) Parameters, (b) Velocity error



Appendix B. Parameters Identification Dataset 78

B.2.4 Yaw
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Figure 39 – Identification dataset for yaw, done in bay: (a) Full trial, (b) 60s zoom in
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Figure 40 – Output of adaptive identifier for yaw. am = 1, λ1 = 5e − 4, λ2 = 5e1, λ3 =
5e− 1, λ4 = 0: (a) Parameters, (b) Velocity error
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C Influence of Gain in Adaptive Identifier

The adaptive identifier has several gain parameters to be empirically tunned. This
appendix explores the influence of two gains, a and λ1, in the parameters identification and
its performance. The base case for this analyses was the dataset of surge DOF performed
in the basin. Surge identification dataset, in Table 5, was used for parameters identification,
while the surge cross-validation dataset, in Table 6 was used for validation of the identified
parameters.

Five values of gain a were used, being [0.1, 0.5, 1, 1.5, 2], while for the gain λ1,
one hundred values were used, from 0.00001 to 0.001. Five hundreds sets of model’s
parameters were identified and their mean absolute error with the cross-validation dataset
were performed.

Figures 41, 42, 43, 44 and 45 present the time evolution of the identified parameters
with the velocity error as a function of λ1 for a equal to 0.1, 0.5, 1, 1.5 and 2 respectively.
The last parameters in time provided by the adaptive identifiers, i.e. the final parameters
as a function of λ1, are presented in Figures 46, 47, 48, 49 and 50 for a equal to 0.1, 0.5, 1,
1.5 and 2 respectively, altogether with the MAE for the correspondent model’s parameters
and the MAE for the parameters provided by the least square method, present in Table 8,
shown as a reference value.

For gain a = 0.1, in Figure 41, the adaptive identifier performs poorly, with abrupt
changes is parameters values. From Figures 42, 43, 44 and 45 it’s perceived that for high
values of λ1, the inertia parameter provided by the adaptive identifier becomes highly
oscillatory and for λ1 smaller than 0.0001 the inertia term slowly changes its value while
the damping terms increase value quickly. It is also perceived that for λ1 > 0.0001, the
velocity error of the adaptive identifier tends to zero faster. Increasing the value of a causes
the velocity error to converge to zero faster and reduce the oscillation’s amplitude of the
parameters.

Although the Figures 46, 47, 48, 49, 50 may suggest that the parameters converge
by increasing the values of a and λ1, they represent the last parameters provided by the
adaptive identifiers, with by chance have similar values. In case the last samples were
placed in a parameter’s peak, they would be considerable different, since no smooth filter
was applied in the adaptive identifier’s output.

Nevertheless, the model’s MAE when using the identified parameters via adaptive
identifier is mostly similar with the model configured with parameters identified via the
least-square method. A minimal value of MAE can be found for a gain λ1 around 0.0002.
The time evolution of parameters present in Figure 26, with a = 1 and λ1 = 0.0002, is
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present in Figure 43 for λ1 = 0.0002.

(a) (b)

(c) (d)

Figure 41 – Output over timer of adaptive identifier in surge DOF as function of λ1, a = 0.1
: (a) Inertia (b) Linear Damping, (c) Quadratic Damping, (d) Velocity Error
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(a) (b)

(c) (d)

Figure 42 – Output over timer of adaptive identifier in surge DOF as function of λ1,
a = 0.5 : (a) Inertia (b) Linear Damping, (c) Quadratic Damping, (d) Velocity
Error
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(a) (b)

(c) (d)

Figure 43 – Output over timer of adaptive identifier in surge DOF as function of λ1, a = 1
: (a) Inertia (b) Linear Damping, (c) Quadratic Damping, (d) Velocity Error
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(a) (b)

(c) (d)

Figure 44 – Output over timer of adaptive identifier in surge DOF as function of λ1,
a = 1.5 : (a) Inertia (b) Linear Damping, (c) Quadratic Damping, (d) Velocity
Error
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(a) (b)

(c) (d)

Figure 45 – Output over timer of adaptive identifier in surge DOF as function of λ1, a = 2
: (a) Inertia (b) Linear Damping, (c) Quadratic Damping, (d) Velocity Error
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Figure 46 – Variation of gain λ1 in adaptive identifier, with gain a = 0.1: (a) Identified
parameters, using identification dataset (b) Mean absolute error of identified
parameters, using cross-validation dataset
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Figure 47 – Variation of gain λ1 in adaptive identifier, with gain a = 0.5: (a) Identified
parameters, using identification dataset (b) Mean absolute error of identified
parameters, using cross-validation dataset
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Figure 48 – Variation of gain λ1 in adaptive identifier, with gain a = 1: (a) Identified
parameters, using identification dataset (b) Mean absolute error of identified
parameters, using cross-validation dataset



Appendix C. Influence of Gain in Adaptive Identifier 86

0 0.0002 0.0004 0.0006 0.0008 0.001
0

200
400
600
800

1000

In
er

tia
 (

K
g)

Gain a =1.5

0 0.0002 0.0004 0.0006 0.0008 0.001
0

50
100
150
200
250

Li
nD

. (
K

g/
s)

0 0.0002 0.0004 0.0006 0.0008 0.001
0

20
40
60
80

100

Gain λ
1

Q
ua

dD
. (

K
g/

m
)

(a)

0 0.0002 0.0004 0.0006 0.0008 0.001
0

0.02

0.04

0.06

0.08

0.1

Gain λ
1

M
A

E
 v

el
oc

ity
 (

m
/s

)

Gain a =1.5

mae error
ls mae error

(b)

Figure 49 – Variation of gain λ1 in adaptive identifier, with gain a = 1.5: (a) Identified
parameters, using identification dataset (b) Mean absolute error of identified
parameters, using cross-validation dataset
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Figure 50 – Variation of gain λ1 in adaptive identifier, with gain a = 2: (a) Identified
parameters, using identification dataset (b) Mean absolute error of identified
parameters, using cross-validation dataset
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