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ABSTRACT 

When it comes to the metamaterials field, metasurfaces represent their promising two 

dimensional ramification. Their simplicity and relative ease of building through the use of 

traditional techniques like lithography, compared to bulk metamaterials. Metasurfaces 

represent a sudden variation of optical properties when an incident wave interacts with it. 

Since its surging, its exploration consisted in utilizing, basically, the plasmonic MIM (metal, 

insulator, metal) construction. These metasurface have developed feats starting with negative 

refractive index and now perform electromagnetic skills such as polarization control and 

wavefront shaping. In order to overcome the inconvenient ohmic losses which are intrinsic to 

the metal parts of plasmonic metasurfaces, the development of all-dielectric metasurfaces has 

arisen and gained strength over the last few years. This work proposes three models of all-

dielectric metasurfaces for different applications within the infrared range of optical 

communications that work by imposing a phase gradient (successive phase jumps) to the 

incident to a normally incident wave. The first proposed device is an anomalous refractor: it 

will be shown a designed refraction for a specifically chosen transmission angle for a 

normally incident wave. The second proposed device is an anomalous reflector, which will 

cause an angulated reflection for a normally incident wave. The third proposed device is an 

all-dielectric metalens, which will have analyzed its capacity of focusing the normally 

incident wave in a focal plane. 

 

 

Keywords: All-dielectric metasurfaces; Generalized Snell’s law; Phase gradient; 

Anomalous refractor; Anomalous transmitter; Anomalous reflector; Reflective metasurfaces;  

Metalens; Wavefront shaping; Focusing; Wave propagation. 

 





 
 

SUMMARY 

1 INTRODUCTION ................................................................................................... 22 

MOTIVATION .......................................................................................................... 22 

OBJECTIVES ............................................................................................................ 23 

General ............................................................................................................... 23 

ORGANIZATION OF THIS WORK .................................................................................... 24 

2 LITERATURE REVIEW ....................................................................................... 26 

2.1 METAMATERIALS: A BRIEF INTRODUCTION .......................................... 26 

2.2 METASURFACES ............................................................................................. 29 

2.3 GENERALIZED LAWS OF REFRACTION AND REFLECTION AND ITS CORRESPONDING 

ANOMALOUS PHENOMENA........................................................................................... 30 

2.4 WAVEFRONT SHAPING ......................................................................................... 33 

2.5 ALL-DIELECTRIC METASURFACES ........................................................................ 34 

3 ANOMALOUS REFRACTOR, ANOMALOUS REFLECTOR AND METALENS – 

DEVICES AND RESULTS CONSIDERING IDEALLY STRUCTURED MODELS

 36 

3.1 INTRODUCTION .............................................................................................. 36 

3.2 ANOMALOUS REFRACTOR.................................................................................... 37 

3.3 ANOMALOUS REFLECTOR .................................................................................... 44 

3.4 METALENS ........................................................................................................... 53 

4 PERFORMANCE ANALYSIS OF THE DEVICES CONSIDERING GEOMETRY 

ERRORS ....................................................................................................................... 59 

4.1 INTRODUCTION .............................................................................................. 59 

4.2 EFFECTS OF GEOMETRY ERRORS IN THE ANOMALOUS REFRACTOR ....................... 60 

4.3 EFFECTS OF GEOMETRY ERRORS IN THE ANOMALOUS REFLECTOR ....................... 75 

4.4 EFFECTS OF GEOMETRY ERRORS IN THE METALENS .............................................. 89 



 
 

CONCLUSIONS AND FUTURE WORKS ............................................................. 118 

CONCLUSIONS ..................................................................................................... 118 

PURPOSES FOR FUTURE WORKS ..................................................................... 119 

REFERENCES: .......................................................................................................... 120 

APPENDIX ................................................................................................................. 124 

APPENDIX A – PUBLICATIONS OF ACADEMIC PAPERS ............................. 124 

A.1  ACADEMIC PAPERS RELATED TO THE PROJECT .................................. 124 

A.1.1  PUBLICATION IN INTERNATIONAL CONGRESS ................................ 124 

APPENDIX ................................................................................................................. 126 

APPENDIX B – FERMAT’S PRINCIPLE AND THE CLASSIC LAWS OF 

REFRACTION AND REFLECTION ...................................................................... 126 

B1 CONSEQUENCE OF FERMAT’S PRINCIPLE WHEN THE LIGHT IS MOVING 

THROUGH THE SAME MEDIA [47] .................................................................... 126 

B2 FERMAT’S PRINCIPLE ON THE CLASSIC REFLECTION OF LIGHT ....... 128 

B3 FERMAT’S PRINCIPLE APPLIED TO THE CLASSIC REFRACTION OF LIGHT

 131 



xiii 
 

LIST OF FIGURES 

 

 

Figure 1 - Frequency of references cited about the subject related to a specific year. ............. 23 

Figure 2 – a) electric and magnetic field with the propagation vector 𝒌 as a left handed system 

b) refraction of EMW through a double negative metamaterial (from [2]).............................. 28 

Figure 3 – Simplistic comparison of classic and anomalous refraction of normally incident 

light. a) Classic approach. b) Metasurface approach, in which it acts as an anomalous 

refractor. ................................................................................................................................... 36 

Figure 4 - Simplistic comparison of classic and anomalous reflection of normally incident 

light. a) Classic approach. b) Metasurface approach, in which it acts as an anomalous 

reflecting mirror. ....................................................................................................................... 37 

Figure 5 – Schematic view of the unit cell of the metasurface, with its dimensions and 

employed materials. In blue, Si. In gray, Air. Dimensions 𝒘𝒂 and 𝒘𝒃 vary from 20 up to 

230(nm). h1 = 300(nm), h2 = 250(nm) and d = 50(nm). Incident electrical field is polarized in 

x direction. The space among the blocks is filled with air. ...................................................... 38 

Figure 6 - Absolute value of the transmission coefficient 𝝉 of the electric field mapped for 

each pair 𝒘𝒂, 𝒘𝒃 varying from 20 to 230 (nm) of the anomalous refractor. ........................... 39 

Figure 7 – Phase of the transmission coefficient for the electric field mapped for each pair 

𝒘𝒂, 𝒘𝒃 varying from 20 to 230 (nm). ...................................................................................... 40 

Figure 8 - Absolute value and phase of the transmission coefficient with angle steps marked 

on the maps. .............................................................................................................................. 41 

Figure 9 – supercell of the metasurface, which considered dimensions are angle step Γ = 750 

(nm) and total length of Λ = 3750 (nm). Material distribution is given by Air, in gray, and Si, 

in blue. The space among the structures is filled with air. Incident electric field is polarized in 

𝒙 direction. ................................................................................................................................ 42 

Figure 10 - Phase profile of the metasurface through the global range from −𝝅 to 𝝅, as a 

function of the position 𝒙. ........................................................................................................ 42 

Figure 11 – 𝒙 component of the electric field, in V/m. Operation of the anomalous refractor as 

a function of the wavelength, 𝝀𝟎, without considering errors within the structure. ................ 43 

Figure 12 - Unit cell of the reflector; air gap between resonators in white, distance denoted by 

g; dark blue is for Si fulfilling the inside of the blocks; SiO2 is in gray, around the Si; The 

ground plane substrate, in pale blue is in Ag; Dimensions of the cell are p = 250 nm, g = 100 



xiv 
 

nm. Both 𝒘𝒂, 𝒘𝒃 vary from 20 to 230 nm. The incident electric field is polarized in 𝒙 

direction. ................................................................................................................................... 45 

Figura 13 - Distribution of the absolute value of the reflection coefficient of the metasurface 

tested for 𝒘𝒂and 𝒘𝒃 varying from 20 to 230 nm. ................................................................... 45 

Figure 14 - Phase of the reflection coefficient of the electric field for 𝑤𝑎and 𝑤𝑏 varying from 

20 to 230 (nm). ......................................................................................................................... 46 

Figura 15 - Absolute value and phase of the transmission coefficient with angle steps marked 

on the maps. .............................................................................................................................. 47 

Figura 16 - Supercell of the metasurface. Γ = 3p = 750 nm; Λ= 21p = 5250 nm; The incident 

electric field, in V/m is polarized in 𝑥 direction. ...................................................................... 48 

Figure 17 - Phase profile of the anomalous reflector, which depends on the position, 

periodically repeated, as for its responsible supercells. ........................................................... 49 

Figure 18 - Anomalous reflection of the electric field, 𝑥 component, performed by the 

metasurface for wavelengths ranging from 1.4 to 1.7 µm. Errors within the structure are not 

being considered. ...................................................................................................................... 50 

Figure 19 - Unit cell of the metalens. Employed materials are Air, in gray, and Si, in blue. 

External dimensions are h1 = 300 nm, h2 = 250 nm and d = 50 nm. Internal dimensions 𝒘𝒂 

and 𝒘𝒃 are swept from 20 up to 230 nm. Incident electrical field is polarized in x direction. 

The space among the blocks is filled with air. ......................................................................... 53 

Figure 20 - Mirrored structure of the metalens (half of its structure). composed by Si, in blue, 

and air, in gray. Basic dimensions are the angle step Γ =  750  nm. The total length is 

Λ =  17250 nm. ....................................................................................................................... 55 

Figure 21 – Ideal phase profile of the metalens, in red, approximated by 23 angle steps of 3 

unit cells each, in blue. ............................................................................................................. 56 

Figure 22 - Power density of the electric field for the wavelength, in W/m², represented by the 

normalized Poynting vector of the EMW, varying around 1550 nm, ranging from 1400 to 

1700 nm. The focus of the metalens coincides with its focal plane, that has the following 

values: a) 6550 nm; b) 6350 nm; c) 5950 nm; d) 5500 nm; e) 5400 nm; f) 5050 nm; g) 4700 

nm. ............................................................................................................................................ 57 

Figure 23 - Influence of varied errors on the anomalous refractor for 𝜆0 = 1.4 µ𝑚. .............. 61 

Figure 24 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the 

supercell for the wavelength of 1.4 µm. ................................................................................... 62 

Figure 25 - Influence of varied errors on the anomalous refractor for 𝜆0 = 1.45 (µ𝑚). ........ 63 



xv 
 

Figure 26 – Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the 

supercell for the wavelength of 1.45 µm. ................................................................................. 64 

Figure 27 - Influence of varied errors on the anomalous refractor for 𝜆0 = 1.5 µ𝑚. .............. 65 

Figure 28 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the 

supercell for the wavelength of 1.5 µm. ................................................................................... 66 

Figure 29 - Influence of varied errors on the anomalous refractor for 𝜆0 = 1.55 (µ𝑚). ........ 67 

Figure 30 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the 

supercell for the wavelength of 1.55 µm. ................................................................................. 68 

Figure 31 - Influence of varied errors on the anomalous refractor for 𝜆0 = 1.6 µ𝑚. .............. 69 

Figure 32 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the 

supercell for the wavelength of 1.60 µm. ................................................................................. 70 

Figure 33 - Influence of varied errors on the anomalous refractor for 𝜆0 = 1.65 µ𝑚............. 71 

Figure 34 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the 

supercell for the wavelength of 1.65 µm. ................................................................................. 72 

Figure 35 - Influence of varied errors on the anomalous refractor for 𝜆0 = 1.7 µ𝑚. .............. 73 

Figure 36 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the 

supercell for the wavelength of 1.7 µm. ................................................................................... 74 

Figure 37 - Influence of varied errors on the anomalous reflector for 𝜆0 = 1.4 µ𝑚. .............. 75 

Figure 38 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell 

for the wavelength of 1.4 µm. .................................................................................................. 76 

Figure 39 - Influence of varied errors on the anomalous reflector for 𝜆0 = 1.45 µ𝑚. ............ 77 

Figure 40 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell 

for the wavelength of 1.45 µm. ................................................................................................ 78 

Figure 41 - Influence of varied errors on the anomalous reflector for 𝜆0 = 1.5 µ𝑚. .............. 79 

Figure 42 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell 

for the wavelength of 1.5 µm. .................................................................................................. 80 

Figure 43 - Influence of varied errors on the anomalous reflector for 𝜆0 = 1.55 µ𝑚. ............ 81 

Figure 44 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell 

for the wavelength of 1.55 µm. ................................................................................................ 82 

Figure 45 - Influence of varied errors on the anomalous reflector for 𝜆0 = 1.6 µ𝑚. .............. 83 

Figure 46 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell 

for the wavelength of 1.6 µm. .................................................................................................. 84 

Figure 47 - Influence of varied errors on the anomalous reflector for 𝜆0 = 1.65 µ𝑚. ............ 85 



xvi 
 

Figure 48 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell 

for the wavelength of 1.65 µm. ................................................................................................ 86 

Figure 49 - Influence of varied errors on the anomalous reflector for 𝜆0 = 1.7 µ𝑚. .............. 87 

Figura 50 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell 

for the wavelength of 1.7 µm. .................................................................................................. 88 

Figure 51 - Influence of varied errors on the metalens for 𝜆0 = 1.4 µ𝑚. The focal plane 

position, 𝑦 in µm, and the power density of the wave on it, in MW/m2, are given in pairs 𝑦, 𝑆 

as it follows: a) 5.7584;   0.61499 b) 5.6029;  0.59454  c) 5.6902;   0.58701  d) 

5.6662;  0.5542  e) 5.5132;  0.51946  f) 5.4767;  0.48341  g) 5.5450;  0.46426  h) 

5.5544;  0.42149  i) 5.4293;  0.38656.................................................................................... 90 

Figure 52 - Influence of varied errors on the metalens for 𝜆0 = 1.45 µ𝑚. The focal plane 

position, 𝑦 in µm, and the power density of the wave on it, in MW/m2, are given in pairs 𝑦, 𝑆 

as it follows: a) 5.2210;    0.67091 b)  5.1478;  0. 65059  c) 5.6902;   0.58701  d) 

5.2235;  0.58396  e) 5.3778;  0.55068  f) 5.2421;  0.51319  g) 5.5450;  0.46425  h) 

5.5567;  0.43588  i) 5.5567;  0.43588.................................................................................... 92 

Figure 53 - Influence of varied errors on the metalens for 𝜆0 = 1.5 µ𝑚. The focal plane 

position, 𝑦, in µm, and the power density of the wave on it, in MW/m2, are given in pairs 𝑦, 𝑆 

as it follows: a) 4.7872;  0.69280 b)  4.4892;  0. 66862  c) 5.0734;   0.69189  d) 

4.9592;  0.68257  e) 5.1144;  0.67768  f) 4.9180;  0.66198  g) 5.0850;  0.62426  h) 

5.1741;  0.58496  i) 5.0028;  0.53436.................................................................................... 94 

Figure 54 - Influence of varied errors on the metalens for 𝜆0 = 1.55 µ𝑚. The focal plane 

position, 𝑦, in µm, and the power density of the wave on it, in MW/m2, are given in pairs 𝑦, 𝑆 

as it follows: a) 4.4481;  0.65490 b)  4.4892;  0. 62586  c) 4.4456;   0.63027  d) 

4.5300;  0.64069  e) 4.3404;  0.65677  f) 4.6256;  0.67154  g) 4.6594;  0.65990  h) 

4.7515;  0.64987  i) 4.5630;  0.63008.................................................................................... 96 

Figure 55 - Influence of varied errors on the metalens for 𝜆0 = 1.6 µ𝑚. The focal plane 

position, 𝑦, in µm, and the power density of the wave on it, in MW/m2, are given in pairs 𝑦, 𝑆 

as it follows: a) 4.4481;  0.64565 b)  4.4892;  0. 66862  c) 4.4456;   0.70051  d) 

4.3196;  0.70344  e) 4.3404;  0.70940  f) 4.5019;  0.68495  g) 4.3267;  0.65145  h) 

4.4219;  0.58850  i) 4.5630;  0.53420.................................................................................... 98 

Figure 56 - Influence of varied errors on the metalens for 𝜆0 = 1.65 µ𝑚. The focal plane 

position, 𝑦, in µm, and the power density of the wave on it, in MW/m2, are given in pairs 𝑦, 𝑆 

as it follows: a) 4.1191;  0.51865 b)  4.0648;  0. 52657  c) 4.1253;   0.54076  d) 



xvii 
 

3.9957;  0.55116  e) 4.0245;  0.57932  f) 4.1857;  0.61725  g) 4.0018;  0.66539  h) 

3.9871;  0.71970  i) 4.1187;  0.75978.................................................................................. 100 

Figure 57 - Influence of varied errors on the metalens for 𝜆0 = 1.7 µ𝑚. The focal plane 

position, 𝑦, in µm, and the power density of the wave on it, in MW/m2, are given in pairs 𝑦, 𝑆 

as it follows: a) 3.6582;  0.51538 b) 3.7319;  0. 53078  c) 3.7972;   0.56162  d) 

3.6728;  0.56162  e) 3.7135;  0.56839  f) 3.7239;  0.57956  g) 3.5647;  0.58527  h) 

3.6523;  0.58430  i) 3.6617;  0.59465.................................................................................. 102 

Figure 58 - Influence of varied errors on the metalens for 𝜆0 = 1.4 µ𝑚. The focal plane 

position, 𝑦 in µm, and the square electric field of the wave on it, in MV2/m2, are given in pairs 

𝑦, 𝐸2 as it follows: a) 5.7584;   401.2516 b) 5.6029;  389.6459  c) 5.6902;  353.8914  d) 

5.6662;  365.0699  e) 5.5132;  340.6452  f) 5.4767;  315.3953  g) 5.5450;  302.6883  h) 

5.5544;  276.6490  i) 5.4293;  250.3519 ............................................................................. 104 

Figure 59 - Influence of varied errors on the metalens for 𝜆0 = 1.45 µ𝑚. The focal plane 

position, 𝑦 in µm, and the square electric field of the wave on it, in MV2/m2, are given in pairs 

𝑦, 𝐸2 as it follows: a) 5.2210;   432.9392 b) 5.1478;  415.5470  c) 5.6902;   353.8914  d) 

5.2235;  371.5872  e) 5.3778;  352.4532  f) 5.2421;  324.6345  g) 5.5450;  306.6178  h) 

5.5567;  294.7587  i) 5.5567;  272.2729 ............................................................................. 106 

Figure 60 - Influence of varied errors on the metalens for 𝜆0 = 1.50 µ𝑚. The focal plane 

position, 𝑦 in µm, and the square electric field of the wave on it, in MV2/m2, are given in pairs 

𝑦, 𝐸2 as it follows: a) 4.7872;   441.1914 b) 4.4892;  412.9054  c) 5.0734;   441.6080  d) 

4.9592;  435.7876  e) 5.1144;  432.6700  f) 4.9180;  422.1848  g) 5.0850;  399.3619  h) 

5.1741;  376.0848  i) 5.0028;  341.3763 ............................................................................. 108 

Figure 61 - Influence of varied errors on the metalens for 𝜆0 = 1.55 µ𝑚. The focal plane 

position, 𝑦 in µm, and the square electric field of the wave on it, in MV2/m2, are given in pairs 

𝑦, 𝐸2 as it follows: a) 4.4481;  408.8204 b) 4.4892;  390.5393  c) 4.4456;   389.1783  d) 

4.5300;  399.2400  e) 4.3404;  406.5665  f) 4.6256;  418.2131  g) 4.6594;  411.3966  h) 

4.7515;  405.6554  i) 4.5630;  391.0229 ............................................................................. 110 

Figure 62 - Influence of varied errors on the metalens for 𝜆0 = 1.60 µ𝑚. The focal plane 

position, 𝑦 in µm, and the square electric field of the wave on it, in MV2/m2, are given in pairs 

𝑦, 𝐸2 as it follows: a) 4.4481;   410.9337 b) 4.4892;  426.1810  c) 4.4456;  441.9019  d) 

4.3196;  443.5039  e) 4.3404;  445.7053  f) 4.5019;  432.3148  g) 4.3267;  405.0702  h) 

4.4219;  366.4733  i) 4.5630;  333.4868 ............................................................................. 112 



xviii 
 

Figure 63 - Influence of varied errors on the metalens for 𝜆0 = 1.65 µ𝑚. The focal plane 

position, 𝑦 in µm, and the square electric field of the wave on it, in MV2/m2, are given in pairs 

𝑦, 𝐸2 as it follows: a) 4.1191;   315.9577 b) 4.0648;  319.7048  c) 4.1253;   326.2227  d) 

3.9957;  332.6175  e) 4.0245;  347.9824  f) 4.1857;  376.2801  g) 4.0018;  401.4145  h) 

3.9871;  341.5878  i) 4.1187;  459.3179 ............................................................................. 114 

Figure 64 - Influence of varied errors on the metalens for 𝜆0 = 1.70 µ𝑚. The focal plane 

position, 𝑦 in µm, and the square electric field of the wave on it, in MV2/m2, are given in pairs 

𝑦, 𝐸2 as it follows: a) 3.6582;   316.3773 b) 3.7319;  327.7093  c) 3.7972;   339.8072  d) 

3.6728;  347.0631  e) 3.3778;  337.764  f) 3.5241;  351.5411  g) 3.5450;  359.6580  h) 

3.5567;  355.5348  i) 3.5567;  354.9597 ............................................................................. 116 

 

 



                                                        19 

 

LIST OF TABLES 

Table 3.1 - Geometric Parameter values for the pairs 𝑤𝑎, 𝑤𝑏, in nm, for each angle step 

of the supercell of the anomalous refractor. ................................................................... 41 

Table 3.2 - Geometric Parameter values for the pairs 𝑤𝑎, 𝑤𝑏, in nm, for each angle step 

of the supercell of the anomalous reflector. ................................................................... 47 

Table 3.3 - Geometric Parameter values for the pairs 𝑤𝑎, 𝑤𝑏, in nm, for each angle step 

of the supercell of the metalens. ..................................................................................... 54 

Table 4.1 – Focal plane position and power density of the wave related to each 

geometry error of the metalens, considering 𝜆0 = 1.4 µ𝑚. ........................................... 91 

Table 4.2 – Focal plane position and power density of the wave related to each 

geometry error of the metalens, considering 𝜆0 = 1.45 µ𝑚. ......................................... 93 

Table 4.3 – Focal plane position and power density of the wave related to each 

geometry error of the metalens, considering λ0 = 1.5 µm. ........................................... 95 

Table 4.4 – Focal plane position and power density of the wave related to each 

geometry error of the metalens, considering λ0 = 1.55 µm. ......................................... 97 

Table 4.5 – Focal plane position and power density of the wave related to each 

geometry error of the metalens, considering λ0 = 1.6 µm. ........................................... 99 

Table 4.6 – Focal plane position and power density of the wave related to each 

geometry error of the metalens, considering λ0 = 1.65 µm. ....................................... 101 

Table 4.7 – Focal plane position and power density of the wave related to each 

geometry error of the metalens, considering λ0 = 1.7 µm. ......................................... 103 

Table 4.8 – Focal plane position and square electric field of the wave related to each 

geometry error of the metalens, considering 𝜆0 = 1.4 µ𝑚. ......................................... 105 

Table 4.9 – Focal plane position and square electric field of the wave related to each 

geometry error of the metalens, considering 𝜆0 = 1.45 µ𝑚. ....................................... 107 

Table 4.10 – Focal plane position and square electric field of the wave related to each 

geometry error of the metalens, considering 𝜆0 = 1.50 µ𝑚. ....................................... 109 

Table 4.11 – Focal plane position and square electric field of the wave related to each 

geometry error of the metalens, considering 𝜆0 = 1.55 µ𝑚. ....................................... 111 

Table 4.12 – Focal plane position and square electric field of the wave related to each 

geometry error of the metalens, considering 𝜆0 = 1.60 µ𝑚. ....................................... 113 



                                                        20 

 
Table 4.13 – Focal plane position and square electric field of the wave related to each 

geometry error of the metalens, considering 𝜆0 = 1.65 µ𝑚. ....................................... 115 

Table 4.14 – Focal plane position and square electric field of the wave related to each 

geometry error of the metalens, considering 𝜆0 = 1.70 µ𝑚. ....................................... 117 



                                                        21 

 

LIST OF ABREVIATIONS 

 

 

EMW:  Electromagnetic Wave 

DPS:   Double Positive Material 

RHM:   Right Handed Material 

LHM:   Left Handed Material 

DNG:   Double Negative Material 

ZIM:   Zero-Index Medium / Metamaterial 

ENG:   Epsilon-Negative Metamaterial 

MNG:   Mu-Negative Metamaterial 

SPP:   Surface Plasmon Polariton 

TE:   Transverse Electric 

TM:   Transverse Magnetic 

SRR:   Split Ring Resonator 

  



                                                        22 

 

1 INTRODUCTION 

MOTIVATION 

Metamaterials are causing great impact on microwave frequencies, optical and 

wireless communications due to their capacity in controlling electromagnetic waves 

[1]. Their particles are subwavelength-scaled, which causes them to be seen as an 

effective media as light waves interact with them. Effective medium theory treats them 

as similar materials those found in nature [2]. 

These scientific breakthroughs brought to light, through experimentation, 

physical phenomena that amaze the scientists and researchers, such as negative 

refraction, invisibility cloak, zero refractive index 

Many models of metasurfaces utilize the concept of wavefront shaping [3], in 

which the metasurface alters the shape of an incident wave by imposing to it a number 

of successive phase jumps.  

The design of metasurfaces that differ from their usual plasmonic MIM (Metal-

Insulator-Metal) pattern of composition receives more attention with each day. Through 

designing metasurfaces that employ only dielectric materials, one can minimize the 

ohmic losses which are intrinsic of the metal parts. 

Some examples of the earliest achievements in all-dielectric metamaterials and 

metasurfaces come from the proposition of dielectric metamaterials in 2007 [4]. An all-

dielectric zero-index medium was proposed in 2011 [5]. The realization of an all-

dielectric zero-index metamaterial for optical frequencies [6] occurred in 2013. 

Wavefront shaping and polarization control through silicon based all-dielectric 

metasurfaces occurred in 2014 [7]. 

All-dielectric metasurfaces represent a growing research field within the 

metamaterial subject. Recent applications include an electrically tunable all-dielectric 

metasurface [8] for visible light modulation, made of TiO2 nanodisks immerse in a 

liquid cristal layer, with transmission modulation over 65%, which represents an 

interest due to its tuning ability. Another application [9] brings an effective method of 

controlling sharp Fano resonances in all-dielectric metasurfaces through by breaking 
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the symmetry of the metasurface in a perpendicular direction one can control the 

number, frequency and type of high-Q resonances (a resonance that can have greater Q-

factor than split-ring-resonators, has its factor attenuated for large asymmetries and 

appears when metamaterial symmetry is initially broken). And, one more, is the use of 

this type of metasurfaces for simultaneous wavefront shaping along with polarization 

rotation of visible light [10]. 

As the following graphic that relates the utilized referenced to their respective 

years can show, more works are surging as the years pass: 

 

Figure 1 - Frequency of references cited about the subject related to a specific year. 

OBJECTIVES 

General 

All-dielectric metasurfaces are becoming a tendency among the researchers in 

the field of metamaterials field. Growing efforts are being made in order to present 

highly efficient metasurfaces, that operate over the global phase range from – 𝜋 to 𝜋 

while develop high absolute values for the refraction and/or reflection coefficients. 

Multipurpose all-dielectric metasurfaces are also being researched, which will be cited 

over the text. 

0
1
2
3
4
5
6
7
8
9

10

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Number of References



                                                        24 

 
This work has the objective of proposing three designs of all-dielectric devices 

in order to overcome the inconvenience of ohmic losses found in plasmonic 

metasurfaces through the use of finite elements method modelling software, Comsol 

Multiphysics 5.2. 

To propose all-dielectric structures made of successive squares, by the 

application of materials with contrasting refractive indexes and test the variations of the 

dimensions of internal squares (which means to alter the material coverage within the 

metasurface). To test the basic building block for a wide range of dimensional values 

that generate the desired conditions for highly efficient devices (global phase control 

along with elevated transmission/reflection absolute value) [11]. 

To analyze the performance of the proposed all-dielectric metasurface models 

considering a perfect geometry. 

To analyze the performance of the proposed all-dielectric metasurface models 

considering a geometry with distributed errors all over its inner squares. 

ORGANIZATION OF THIS WORK 

Chapter 2 of this work presents the theoretical background of all-dielectric 

metasurfaces. It starts by presenting the basic concept and nomenclature of 

metamaterials, their types and applications. Metasurfaces are, then introduced, in terms 

of their advantages when compared to bulky metamaterials. It is possible, then, to 

discuss the generalized refraction and reflection equations (see Appendix B for the 

classic equation according do Fermat’s Principle). It is possible, then, to briefly discuss 

the concept of wavefront shaping. The second chapter ends by introducing all-dielectric 

metasurfaces. 

Chapter 3 presents the three proposed models of all-dielectric metasurfaces. The 

first model refers to an anomalous refractor. The second model is an anomalous 

reflector. The third model is a metalens. Their conception is discussed in details: 

equations that originate each design are shown and how the structures evolve from an 

unit cell to a supercell, periodic for the refractor and the reflector and aperiodic for the 
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metalens. Results for the wavelength ranging from 1.4 to 1.7 µm are shown, 

considering a perfect geometry for the structures. 

Chapter 4 introduces the models to a closer approach to the real world through 

the insertion of geometry errors all over them. Analysis of how their individual 

performance was altered for punctual values of wavelengths is made. 

And, at last, Chapter 5 concludes this work and brings suggestions for future 

works.  
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2 LITERATURE REVIEW 

2.1 METAMATERIALS: A BRIEF INTRODUCTION 

Metamaterials are micro and nano engineered constructions made of “common” 

materials with complex interaction, capable of exhibiting extraordinary properties as 

they interact with electromagnetic waves [1]. The structure is a composite of meta-

atoms [2, 12] or unit cells: artificial particles smaller than the wavelength, with certain 

geometries, shapes and materials working as electric and/or magnetic resonators that 

can be arbitrarily arranged. These work as the building blocks of metamaterials and, for 

periodic materials, simulations of its interaction with the electromagnetic excitation for 

a single period describes the whole electromagnetic response of the complete structure. 

The name “metamaterial” was created by Walser [13], used to describe the 

effective behavior of composites. The first unexpected feature of metamaterials is the 

negative refractive index. Such characteristic was theoretically foreseen by Victor 

Georgievich Veselago (1929 - 2018) in 1968 [14], who affirmed that there never was 

an experiment to discover a substance with negative refractive index until then. He also 

discussed about how to investigate these materials, how it would impact the Doppler 

Effect and that special lenses could be created based on this trait. It was only in 2000 

that Sir John Pendry [15] published a paper that considered negative refractive index, 

which gave birth to the vision of Veselago and brought a whole new set of possibilities 

within the metamaterial vast field of research. The same negative refractive index was 

experimentally verified in 2001 [16]. 

Metamaterials are also classified according to their resonant state. The resonant 

type of metamaterials always has narrow bandwidth and heavy losses, but it presents, 

however, singular values of effective permittivity (and/or permeability). The cited 

values embrace zero refraction index and negative permittivity (and/or permeability), 

that creates space for, at least, unusual physical behaviors: tunneling effect, perfect 

imaging and negative refraction. The nonresonant type of metamaterials, which 

medium parameters occur over a wideband and have low losses, involves unit-cells far 
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from the resonance, implying the smooth electromagnetic response that creates its 

benefits. Their dynamic range of electromagnetic response, however, is small. 

Metamaterials are anisotropic in its vast majority. The only cases of isotropic 

metamaterials occur when it has fully circular symmetry (2D) or spherical (3D). 

The analysis of metamaterials requires the use of homogenization laws in order 

to study their macroscopic properties, since there are heterogenic materials composing 

the whole set. Unlike the contributions of the isolated materials to the whole structure, 

the mixing of different materials imply in unexpected properties. A usual criterion for 

the design is to consider the dimensions of its structure inferior to 0.1 of the operation 

wavelength, so that the electromagnetic wave propagates through the metamaterial as it 

would for an homogeneous media. Dimensions are in the order of dozens of 

nanometers. The form of the internal organization the heterogenic structure is 

organized, which can be diverse, and the parameters of the base materials, will provide 

the effective 𝜀௘௙௙ and 𝜇௘௙௙ required for the metamaterial to manipulate the EMW as 

expected. 

Homogeneous metamaterials are composed by periodic meta-atoms which 

dimensions are below the wavelength’s. Among their distinct medium possibilities, 

there are [17] the double positive or right handed materials (DPS or RHM), left handed 

or double negative materials (LHM or DNG), zero-index medium (ZIM), epsilon-

negative (ENG) metamaterials and mu-negative metamaterials (MNG). 

The LHM had their existence early foretold by Veselago [11] as he described 

materials with epsilon and mu both negative, resulting in an unexpected refraction as 

shown in Figure 2, where the refracted beam doesn’t change to the other side of the 

normal interface line, but is transmitted to the same side where it interacts with the 

material. 



                                                        28 

 

 

Figure 2 – a) electric and magnetic field with the propagation vector 𝒌 as a left handed system b) refraction of EMW 
through a double negative metamaterial (from [2]) 

Metamaterials which permittivity or permeability or even both parameters are 

zero are known as the zero-index metamaterials (ZIM). Such materials can be used to 

improve the parallel direction of the emitted beam of antennas, for example. When the 

special case of both permittivity and permeability are zero, electromagnetic waves 

passing through the metamaterial or metasurface have its direction changed to the 

normal of the metasurface, which is known as tunneling. As described before, these are 

resonant metamaterials and their bandwidth, where the zero-index occurs, is expected 

to be narrow. 

Epsilon-negative metamaterials (ENG) are capable of guiding TM mode surface 

plasmon polaritons (SPP) through the metal-dielectric interface. Such materials are also 

known as electrical metamaterials. The negative epsilon can be found in materials that 

occur in nature for certain frequency ranges, such as noble metals as gold when 

considering optical frequencies, doped semiconductors operating in frequencies that are 

lower than plasma. 

Mu-negative metamaterials (MNG) are capable of working as a slab, guiding 

TE mode SPPs when interfacing a positive-mu material. These materials do not occur 

in nature, however there are structures such as the split ring resonator (SRR) that offer 

this feature and other artificial structures. 
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2.2 METASURFACES 

Metasurfaces are the 2D version of metamaterials, which thickness is smaller 

than the wavelength [18]. Related to its thickness, its greater ease of construction, if 

compared to 3D metamaterials, and the lower losses that are expected to occur as the 

radiation penetrates the depth of the material are initial advantages that motivated more 

and more studies over the last years.  

When conventional optical components are considered, interaction with light 

occurs as it propagates through the material depth, causing changes in the amplitude, 

phase and/or polarization state of the wave. Consequently, optical components, such as 

lenses, refractors, reflectors and other kinds have its design with high considerations 

about thickness. As optical miniaturization is increasingly spreading through a number 

of electromagnetic devices, the study field of metasurfaces acquires greater importance, 

for these nearly plane devices can play their role much more efficiently than 

conventional components. Besides, metasurfaces can perform more functions over the 

EMW, such as anomalous refraction and reflection, negative refraction of the light and 

other effects that are not found in natural materials. 

Differently of many metamaterials, which will remain for some time, yet, as not 

more than simulations, its planar counterpart can be fabricated by lithography or other 

method like nanoimprints, which already exists. This attractive drives many researchers 

to move further beyond simulations and turn them into physical components. This 

ultrathin film can greatly diminish losses, compared to bulky metamaterials, 

considering the proper structure and materials. Metasurfaces have been attracting 

overwhelming interest of researchers due to its increasing effectiveness in controlling, 

which allows them to dismiss bulky metamaterials that could be necessary otherwise. 

Since its thickness is subwavelength, metasurfaces can offer critical changes in optical 

properties of the radiation as it propagates through a thin interface. The design is done 

through the use of optical scatterers which spacing among each other is smaller than the 

wavelength and by utilizing different quantities of materials along the structure. The 

result is a surface that changes the optical properties of the wave depending on which 
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point of it the incidence is considered (in other words, the optical response varies along 

the metasurface). 

 

2.3 GENERALIZED LAWS OF REFRACTION AND REFLECTION AND ITS 
CORRESPONDING ANOMALOUS PHENOMENA 

It is well-known among vast classic literature about optical properties that when 

the radiation interacts with the interface between two homogeneous materials, its initial 

intensity is split into the transmitted and reflected [19, 20], which are given by the 

classic Snell’s law and Fresnel equations: 

 𝑛௜ sin 𝜃௜ = 𝑛௧ sin 𝜃௧ (2.1) 

 𝜃௜ = 𝜃௧ (2.2) 

Since the treated subject is metasurfaces for purposes that include highly 

efficient refraction and reflection, absorbed intensity of radiation will not be considered 

in the present discussion. 

It has been previously discussed that the electromagnetic wave suffers reflection 

and refraction when it reaches a boundary between two homogeneous media. When it 

comes to metasurfaces, however, this boundary is constituted by a thin array of 

subwavelength optical scatterers (“optical antennas”) that makes them capable of 

shaping the wavefront and/or converting the polarization of the incident field. Phase 

changes caused by the metasurface can be contained inside the global range from  −𝜋 

to 𝜋: this metasurface is said to have been designed to perform global phase control of 

the incident wave. If the metasurface causes uniform phase change to the wave, it 

conserves both reflected and refracted directions of the wave (linear phase profile). 

Such consideration – linear phase profile – is taken as basis to determine the 

appropriate model of metasurfaces to develop high efficiency anomalous refraction and 

reflection, while a quadratic phase profile metasurface is the adequate one for the 

metasurface operation as a flat lens, focusing incident electric field around a previously 

designed focal plane. More details are shown in chapter 3. 



                                                        31 

 
Fermat’s principle is discussed in the Appendix of this work, serving as a 

background for the classic reflection and transmission. The structure of a metasurface is 

composed of unit cells (or groups of unit cells) that are organized in a material variation 

profile that acts by causing the necessary discrete phase jumps on the incident wave. 

The groups of cells that work as optical antennas cause the phase jumps in a 

way that the optical path remains stationary. That guarantees the propagation through 

the optical path, which yields the generalized laws of refraction and reflection [19, 20] 

as it follows in equation 2.3 for the transmission and in equation 2.4 for the reflection. 

 

⎩
⎪
⎨

⎪
⎧𝑛௧ sin 𝜃௧ − 𝑛௜ sin 𝜃௜ =

1

𝑘଴

𝜕𝜑

𝜕𝑥

cos 𝜃௧ sin 𝜃௧ =
1

𝑛௧𝑘଴

𝜕𝜑

𝜕𝑦

 (2.3) 

The free space wave vector is given by 𝑘଴. The phase gradient components on 

the metasurface are given by 
డఝ

డ௫
  and 

డఝ

డ௬
. If the phase gradient is not considered, the 

generalized equation in equation 2.3 becomes the classic Snell’s law. The variables 𝑛௜, 

𝑛௧, 𝜃௜, 𝜃௧, 𝜑௧and 𝜑 are, respectively, refractive index of the media from where the 

wave comes, refractive index of the media where the wave is transmitted to, angle of 

incidence, projection angle of the transmitted beam related to the normal plane, 

projection angle of the transmitted beam related to the plane of incidence and phase 

profile. 

The reflection equations are given as it follows: 

 

⎩
⎪
⎨

⎪
⎧sin 𝜃௥ − sin 𝜃௜ =

1

𝑛௜𝑘଴

𝜕𝜑

𝜕𝑥

cos 𝜃௥ sin 𝜃௥ =
1

𝑛௥𝑘଴

𝜕𝜑

𝜕𝑦

 (2.4) 

About equation 2.4, 𝑛௥ is the refractive index of the media where the wave is 

reflected to. The other variables are already described following equation 2.3. 

It can be noticed that the incident angle equals the reflection angle if the phase 

gradient is not taken into account.  
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The generalized laws include the phase gradient of the metasurface, which 

works as a wave vector that is applied to the incoming wave. By controlling the phase 

gradient through the appropriate design of the metasurface, within a chosen wavelength 

range, one can redirect the incident wave as desired. 

The models shown in this were created by utilizing successive wave scatterers 

to control the phase of the incident wave within the global range from  −𝜋 to 𝜋. These 

unit cells were positioned one close to the next in an array, as it will be explained in 

chapter 4. The distance between two scatterers is very inferior compared to the 

wavelength. According to the Huygen’s principle, incident spherical waves can, then, 

interact with the metasurface and leave it having planar wavefronts. 

Experimental demonstration results of the generalized laws of refraction and 

reflection can be seen in [19], where eight V-shaped gold antennas are in a periodic 

arrangement. The metallic antennas have subwavelength spacing to generate the proper 

scattering, but not too small, as it necessary to prevent strong coupling of the near-field 

among each pair of antennas. Phase gradient is kept constant along the plasmonic 

interface through the use of periodic supercells (each one compose of the eight rotated 

V-shaped antennas), though it is not a required condition for the usage of the 

generalized laws. Such is shown in the results, where both periodic and aperiodic 

structures are utilized.  

Periodic structures are chosen for the refractor and the reflector metasurface 

models, whiles an aperiodic structure is set for the metalens. The three models 

presented in this work consist in all-dielectric metasurfaces. 

Yet another application of the generalized laws is a plasmonic device interface 

that creates vortex beams from normally incident light with linear polarization. Vortex 

beams can be used to rotate particles [21] or to encode information in optical 

communication systems [22]. 
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2.4 WAVEFRONT SHAPING 

Metasurfaces are able to model wavefronts as desired. This trait is required to 

perform the functions of anomalous refraction, reflection and metalenses (or flat 

lenses). 

It is desirable to elevate the efficiency of the anomalous refractor by totally 

obliterating the reflection. That can be considering the principles of Huygens’ surfaces 

by causing the following relation [18] among the electric polarization (𝛼௘), magnetic 

polarization (𝛼௠) and the impedance of the surrounding media (𝜂଴): 

 ඨ
𝛼௘

𝛼௠
= 𝜂଴ (2.5) 

The transmission coefficient, t , is given by: 

 𝑡 = 𝜏𝑒௝ఝ೟ (2.6) 

The absolute value of 𝑡 is given by 𝜏, while its phase is represented as 𝜑௧.  

Global phase control implies that the wave will be able to obtain phase jumps 

from −𝜋 to 𝜋. To reach such condition, 𝛼௘ and 𝛼௠ can be adjusted over the 

metasurface, through its geometry, spacing and applied materials, satisfying equation 

2.6. 

A device that works according to wavefront shaping is the Metalens, which can 

convert, for certain wavelengths, planar wavefronts that incide normally over it to 

spherical wavefront. In order to develop a model of metalens, one must consider the 

following quadratic phase profile in equation 2.7: 

 𝜑௅(𝑥, 𝑦) =
2𝜋

𝜆
ቀඥ𝑥ଶ + 𝑦ଶ + 𝑓ଶ − 𝑓ቁ (2.7) 

Where 𝑓 is the focal distance from the metalens. 
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2.5 ALL-DIELECTRIC METASURFACES 

Plasmonic metasurfaces have already achieved a long range of applications and 

represent a widely studied field within the metamaterial the metamaterial subject. 

When it comes to efficiency, however, its metallic parts come with the inconvenience 

of ohmic losses. These are more expressive in the optical domain. In the recent years, 

in order to overcome such issue, research on metasurfaces that uniquely employ 

dielectric materials with high refractive index, which represent negligible losses, thus 

solving the efficiency problem. 

All-dielectric metasurfaces are built, as the name suggests, by dielectric 

resonators. The resonators have their size 𝑑 considerably diminished as the electric 

permittivity,  given by 𝜖, grows due to the approximate proportionality relation that 

follows: 

 𝑑~
𝜆଴

√𝜖
 (2.8) 

The reason for choosing materials with high refractive index can be understood 

by observing the relation [23] among the refractive index 𝑛, the relative magnetic 

permeability 𝜇௥ and the relative electric permittivity 𝜖௥: 

 𝑛 =  ඥ𝜇௥𝜖௥ (2.9) 

Since the magnetic permeability μ for dielectric materials is approximately 

equal to the vacuum permeability (4𝜋. 10ି଻ H/m), it occurs that 𝜇௥ =
𝜇

𝜇଴
ൗ  is about the 

unity and equation 2.7 can be rewritten as it follows: 

 𝑛 = ඥ𝜖௥ (2.10) 

Equation 2.8 implies that the refractive index approximation for dielectric 

materials solely depends on the relative electric permittivity 𝜖௥ = 𝜖
𝜖଴ൗ , where 𝜖଴ =

8,85 ∗ 10ିଵଶ 𝐹/𝑚 is the vacuum electric permittivity. This explains how the dimension 

𝑑 of the dielectric resonators decreases through the use of high refractive index 

materials over the geometry of the metasurface. 
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When designing all-dielectric metasurfaces, though materials with higher 𝜖 

values can miniaturize the size of their composing resonators, there are two tendencies 

for the permittivity that has to be considered: the greater the 𝜖 is, the narrower 

bandwidth is supposed to be, as well as for the radiation frequency, which also 

decreases with higher values of 𝜖. This last tendency can be dealt with by utilizing a 

metallic ground plane as a base for the placing of the resonators. 

In order for the amount of dielectric resonators to work as an all-dielectric 

metasurface, it is necessary to cause a magnetic response over them [24], so that it, may 

express the uncommon properties of metamaterials/metasurfaces, such as the negative 

refractive index (see section 2.1). 

As written in section 2.3, global phase control represents the phase jumps from 

  to  enables the metasurface to perform wavefront shaping (which is done by the 

proposed devices) and polarization conversion. This whole range can be distributed 

successfully over the dielectric metasurface by changing the geometric parameters of 

the unit cells. 
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3 ANOMALOUS REFRACTOR, ANOMALOUS 
REFLECTOR AND METALENS – DEVICES AND 
RESULTS CONSIDERING IDEALLY 
STRUCTURED MODELS 

3.1 INTRODUCTION 

This chapter is dedicated to introduce the three proposed devices of this work 

[25 - 27]. In order to do so, it gathers the theory of the dispositives, explanations about 

how the proposed models were designed and state of the art models so far. Results for 

the ideal models and practical models which include more real world approximations 

through introduction of errors will be left for chapter 4, specifically about results. 

Before the advent of metamaterials, classic Snell’s law foresaw how a beam of 

light was supposed to bend when it crossed from one homogeneous transparent media 

to another. Additionally, if normal incidence of light occurred over the interface 

between the two media, normal transmission was totally expected to occur. 

Metamaterials and, mostly, metasurfaces, however, have tremendous potential for 

achieving previously unforeseen electromagnetic phenomena, such as the anomalous 

transmission of light [25, 26], anomalous reflection and high resolution metalensing 

[15, 27]. A simplistic illustration of this idea is shown in Figure 3: 

 

Figure 3 – Simplistic comparison of classic and anomalous refraction of normally incident light. a) Classic approach. 
b) Metasurface approach, in which it acts as an anomalous refractor. 

Fresnel equations demonstrate how the light is reflected when it interacts with a 

perfect mirror. A special case is the one of normal incidence, in which case the beam of 



                                                        37 

 
light is reflected in the same direction of where it came from. When it comes to 

metasurfaces, it is possible to perform the anomalous reflection of light. For the same 

cited special case, the anomalous reflection caused by the metasurface imposes the 

normal beam of light to reflect in a bent direction. Again, for an initial idea, a simplistic 

illustration of the idea is shown in Figure 4: 

 

Figure 4 - Simplistic comparison of classic and anomalous reflection of normally incident light. a) Classic approach. 
b) Metasurface approach, in which it acts as an anomalous reflecting mirror. 

For a description about how the classic refraction and reflection equations can 

be derived from Fermat’s principle, see Appendix B. Generalized equations explaining 

the anomalous phenomena are set in section 2.3. 

 

3.2 ANOMALOUS REFRACTOR 

The design of the anomalous refractor begins with its unit cell pattern, shown in 

Figure 5. Unit cell is the basic block of the metasurface. The proposed model for the 

anomalous refractor starts from ABA type of unit cell, which is composed of three 

squares, where the first is just like the third one. This, together with the proper variation 

of the dimensions 𝑤௔ and 𝑤௕ along the metasurface, is enough to ensure that the 

transmission is maintained over 90% while the metasurfaces also performs global 

phase control.  
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Figure 5 – Schematic view of the unit cell of the metasurface, with its dimensions and employed materials. In blue, 
Si. In gray, Air. Dimensions 𝒘𝒂 and 𝒘𝒃 vary from 20 up to 230(nm). h1 = 300(nm), h2 = 250(nm) and d = 50(nm). 

Incident electrical field is polarized in x direction. The space among the blocks is filled with air. 

The employed materials for the unit cell have refractive index of 3.4757 for Si 

and 1 for air. Operation wavelength is 1.55 µm because of the low losses in silica fiber 

optic. For the proposed model, the phase of the normal electric field gains increments, 

phase jumps, only through the x direction. This means that there is no phase gradient in 

y direction, 
డఝ

డ௬
. Thus, the second equation of equation 2.3 and equation 2.4 are equal to 

zero for the proposed model. The necessary linear phase profile 𝜑(𝑥) that turns the 

metasurface into an anomalous refractor (or transmitter) consists, ideally, of a straight 

line, denoted by equation 3.1. The dependence of 𝜑(𝑥) with respect to the transmission 

angle 𝜃௧ comes along with the 𝛼 parameter [28], which is specifically shown in 

equation 3.2:  

 𝜑(𝑥) = 𝛼𝑥 (3.1) 

 𝛼 = −𝑘଴ sin(𝜃௧) (3.2) 

About equations 3.1 and 3.2, the 𝛼 parameter is a function of the chosen 

transmission angle. Ultimately, having chosen the transmission angle, 𝜑(𝑥) in equation 

3.1 can be solely considered as a function of the position 𝑥. 

The design of this model considered as pre-requisites that the metasurface 

should be able to perform global phase control, besides achieving a transmission 

coefficient, 𝜏, as close to 1 as possible. In other words, the model intends to bend and 

transmit about the whole incident electric field. In an ideal case, the absolute value of 

the transmission coefficient, 𝜏 = 1 would occur for any phase 𝜑 ranging from −𝜋 to 𝜋. 

The transmission coefficient is given by  

𝑡 = 𝜏𝑒௝ఝ೟ (equation 2.6). 
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Other designs might consider a different goal for the metasurface. In [29] a 

metasurface is shown as a versatile, multifunctional device working times as an 

anomalous refractor, times as a reflecting mirror or a beam splitter, according to the 

incidence angle. 

The transmission coefficient 𝑡 is then tested for a variety of 𝑤௔, 𝑤௕ dimensions, 

both swept from 20 to 230 nm. The result is the absolute value of transmission, mapped 

as the regions of higher and a few lower transmission areas. Figure 6 shows a 

widespread zone of elevated absolute value of the transmission coefficient, 𝜏, way over 

90%. This means that the incident electrical field is transmitted at its almost full 

intensity.  

 

Figure 6 - Absolute value of the transmission coefficient 𝝉 of the electric field mapped for each pair (𝒘𝒂, 𝒘𝒃) varying 
from 20 to 230 (nm) of the anomalous refractor. 

The phase of the transmission coefficient is also verified for the same (𝑤௔, 𝑤௕) 

pairs, resulting in the phase map shown in Figure 7. Phase shifts all around the range 

from – 𝜋 to 𝜋 are shown. This implies that the metasurface is able to perform global 

phase control, a necessary condition to work as the anomalous refractor. 
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Figure 7 – Phase of the transmission coefficient for the electric field mapped for each pair (𝒘𝒂, 𝒘𝒃) varying from 20 
to 230 (nm). 

The next step is to choose a curve of (𝑤௔, 𝑤௕) pairs that is simultaneously 

common to Figures 6 and 7 that represents the phase shifts on the global range from – 𝜋 

to 𝜋 while the absolute value of the transmission coefficient is kept high, over 0.9. 

A corresponding table of values, which generated Figures 6 and 7, was obtained 

and those pair of values 𝑤௔, 𝑤௕ found to be more adequate for the unit cells to attend to 

global phase control along with high transmission. The smallest number of different 

pair values that sufficed the aforementioned conditions was 5, which stands for 5 

different unit cells. These values are enlisted in Table 3.1, as it follows: 

TABLE 3.1 
GEOMETRIC PARAMETERS OF THE UNIT CELL 

Cell / Param. 𝑤௔ 𝑤௕ 

1 52.308 84.615 

2 73.846 46.923 

3 230 63.077 

4 219.23 30.769 

5 30.769 230 
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Table 3.1 - Geometric Parameter values for the pairs (𝑤௔ , 𝑤௕), in nm, for each angle step of the supercell 

of the anomalous refractor. 

 

Table 3.1 might be understood as indicating the points of the same curve that 

will traverse both absolute value and phase for the maps of Figures 6 and 7, posted as it 

follows, now marked in Figure 8, for a simpler observation: 

 

Figure 8 - Absolute value and phase of the transmission coefficient with angle steps marked on the maps. 

In order to reproduce the approximate necessary linear phase profile, the five 

points of Table I were taken as five angle steps. Each angle step consists in 3 side-by-

side unit cells. These represent the successive phase jumps that the metasurface adds to 

the electric field as it is crossed. While in simulations, the use of two adjacent unit cells 

could even strengthen the absolute value of the transmission coefficient, however the 

global phase control would be compromised. This explains the use of three adjacent 

unit cells for the model. 

By stacking together 5 angle steps of three unit cells each one, the supercell of 

the anomalous refractor was then defined. The angle step has Γ = 750 nm, thus the 

length of the 5 angle steps that compose the whole structure is Λ = 3750 nm. The wave 

vector in free space, 𝑘଴, implies that the electromagnetic wave propagates normally to 

the metasurface, along the 𝑦 direction. The supercell is designed to periodically repeat 

itself to the left and to the right considering Floquet periodicity. The structure is shown 

in Figure 9.  
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Figure 9 – supercell of the metasurface, which considered dimensions are angle step Γ = 750 (nm) and total length of 
Λ = 3750 (nm). Material distribution is given by Air, in gray, and Si, in blue. The space among the structures is filled 

with air. Incident electric field is polarized in 𝒙 direction. 

The chosen transmission angle for the refractor was 25°, though the obtained 

one, in practice, was 24.17°. Substituting in equation 3.2 yields 𝛼 = 1.67, thus 

equation 3.1 of the linear phase profile becomes 𝜑(𝑥) = 1,67𝑥. As the supercell is 

periodically repeated to the sides, so is the phase profile produced by them. Global 

phase range is represented in Figure 10 in multiples of 𝜋 rad along the position x, same 

as the polarization of the electric field.  

 

Figure 10 - Phase profile of the metasurface through the global range from −𝝅 to 𝝅, as a function of the position 𝒙. 

Each supercell has a length of 3.75 µm. In Figure 10, the first one is within the 

interval from 0 to 3.75 µm. Since the design of the metasurface considers Floquet 

periodicity, it repeats to left and right sides, yielding the repeated phase profile to the 

sides, as shown in Figure 10. Results considering the operation of the ideally built 

anomalous refractor, without any errors in its metastructure are shown in Figure 11.  
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a) 1.40 µm 

 
b) 1.45 µm 

 
c) 1.50 µm 

 
d) 1.55 µm 

 
e) 1.60 µm 

 
f) 1.65 µm 

 
g) 1.70 µm 

 
 

 
 

Figure 11 – 𝒙 component of the electric field, in V/m. Operation of the anomalous refractor as a function of the 
wavelength, 𝝀𝟎, without considering errors within the structure. 

Figure 11 shows, within the simulated operation of the proposed model, the 

influence of the wavelength over the device. Equation 3.2 directly depends on the 

wavelength 𝜆଴, which affects the wave vector, 𝑘଴ and, consequently, the 𝛼 parameter. 

The 𝛼 parameter is what defines how the phase profile 𝜑(𝑥) will cause the successive 

phase jumps over the crossing electric field. This explains why the transmission angle 

can be visualized changing as the wavelength grows from 1.4 µm to 1.7 µm in steps of 

0.05 µm. 
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The analysis of the devices considering possible errors in the supercell structure 

that may occur during its fabrication were left for chapter 4, in which a comparison is 

made to the ideal case shown here. 

The concept of the proposed model may permit designs for many applications 

such as ultrathin gratings, cloaking, lenses within the range of infrared and visible 

spectra for wireless optical communications. 

 

3.3 ANOMALOUS REFLECTOR 

Previously, the construction of a model of an anomalous refractor was shown 

based on satisfying the generalized Snell Laws where global phase control and high 

transmission were determinant to succeed with the modelling. Now, similar principles 

are followed to obtain the model of the proposed anomalous reflector. A basic idea of 

what the phenomena was shown in section 3.1. This section concerns with the step-by-

step modelling of the device. In order to do so, it is a prime rule to obtain global phase 

control for the reflected electric field and, as close as possible, to nullify any 

transmitted electric field through the device. The reflection coefficient, 𝑟, is expressed 

by: 

 𝑟 = |𝑟|𝑒௝ఝೝ (3.3) 

The reflector requires the attendance of the set of equations 2.4. Since the 

structure of the metasurface has a design in which the electric field is polarized only in 

the 𝑥 direction, the 𝑦 component of the phase gradient is null. This means that only the 

first equation of the referred set is considered. 

The design starts with the model of the unit cell of square blocks, which 

employs two square blocks backed up by a silver (Ag) substrate, shown in Figure 12. 

The Ag substrate is used for the rough reflection of the incident wave, without 

implying losses, which ensures the all-dielectric characteristic of the proposed device. 

The unit cell is composed by the following materials: Si, in dark blue; SiO2, in gray; 

and Ag in pale blue and Air, making a gap distance between the two first blocks to the 

left of Figure 11. The three square blocks all have equal outer lengths 𝑝 = 250 𝑛𝑚. 
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The employed materials for the unit cell have refractive index of 3.4757 for Si, 1.4440 

for SiO2 and 1 for Air. Operation wavelength is 1.55 µm.  

 

Figure 12 - Unit cell of the reflector; air gap between resonators in white, distance denoted by g; dark blue is for Si 
fulfilling the inside of the blocks; SiO2 is in gray, around the Si; The ground plane substrate, in pale blue is in Ag; 

Dimensions of the cell are p = 250 nm, g = 100 nm. Both 𝒘𝒂, 𝒘𝒃 vary from 20 to 230 nm. The incident electric field 
is polarized in 𝒙 direction. 

The inner lengths 𝑤௔ and 𝑤௕ are swept from 20 to 230 nm in order to generate 

the maps with the distributions of absolute value |𝑟| and phase 𝜑௥ that compose the 

reflection coefficient 𝑟, of equation 3.3. These are exhibited in Figures 13 and 14, 

respectively: 

 

Figura 13 - Distribution of the absolute value of the reflection coefficient of the metasurface tested for 𝒘𝒂and 𝒘𝒃 
varying from 20 to 230 nm. 
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Figure 14 - Phase of the reflection coefficient of the electric field for 𝑤௔and 𝑤௕ varying from 20 to 230 (nm). 

Once obtained the maps, the next step is to choose a set of (𝑤௔, 𝑤௕) pairs that 

imply a curve that is simultaneously common to Figures 13 and 14 that represents the 

phase shifts on the global range from – 𝜋 to 𝜋 while the absolute value of the reflection 

coefficient is kept high, over 0.9. 

A corresponding table of values, which came from Figures 13 and 14, was 

obtained considering those pairs of values for 𝑤௔, 𝑤௕ that were found to be more 

adequate for the unit cells to attend to global phase control along with high reflection. 

The smallest number of different pair values that sufficed the aforementioned 

conditions was 7, which stands for 7 differently fulfilled terns of unit cells – the angle 

steps of the discretized phase profile that cause the phase shifts on the electric field as it 

traverses the metasurface. These values are enlisted in Table 3.2: 
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TABLE 3.2 
GEOMETRIC PARAMETERS OF THE UNIT CELL 

Cell / Param. 𝑤௔ 𝑤௕ 

1 164.83 20 

2 208.28 215.52 

3 99.655 230 

4 230 56.207 

5 222.76 20 

6 193.79 48.966 

7 157.59 34.483 

 
Table 3.2 - Geometric Parameter values for the pairs (𝑤௔ , 𝑤௕), in nm, for each angle step of the supercell 

of the anomalous reflector. 

Table 3.2 might be understood as indicating the points of the same curve that 

will traverse both absolute value and phase for the maps of Figures 13 and 14, posted 

as it follows, now marked in Figure 15, for a simpler observation: 

 

Figura 15 - Absolute value and phase of the transmission coefficient with angle steps marked on the maps. 

These seven angle steps that discretize the phase profile are shown as the 

supercell of the metasurface, in Figure 16. It has two major dimensions: the length Γ of 

the angle step and the total length Λ. Each angle step is a ternary of three equal and 
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adjacent unit cells, which makes its length Γ = 750 nm. The seven angle steps that 

form the supercell imply, then, the total length of Λ = 5250 nm. Same as for the 

previous proposed model, the supercell is designed to periodically repeat itself to the 

left and to the right considering Floquet periodicity and the wave vector in free space, 

𝑘଴, implies that the electromagnetic wave propagates normally to the metasurface, 

along the 𝑦 direction. 

 

Figura 16 - Supercell of the metasurface. Γ = 3p = 750 nm; Λ= 21p = 5250 nm; The incident electric field, in 
V/m is polarized in 𝑥 direction. 

The phase profile for the reflector is given by equation 3.4: 

 𝜑(𝑥) = −𝛼𝑥 (3.4) 

Since the treated phenomena is reflection, the 𝛼 parameter is obtained by the same way 

described for the refractor, however the phase profile has changed signal, which implies 

in a decreasing straight line for the phase profile. 

The chosen reflection angle for the proposed model was 17.17°. Substituting in 

equation 3.2 yields 𝛼 = −1.19, thus equation 3.5 of the linear phase profile becomes 

𝜑(𝑥) = 1,19𝑥. As the supercell is periodically repeated to the sides – due to Floquet 

periodicity applied to its sides – the phase profile produced by them is as well. Global 

phase range of −𝜋 to 𝜋 is represented in Figure 17, in multiples of 𝜋 rad, along the 

position 𝑥, same as the polarization of the electric field.  
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Figure 17 - Phase profile of the anomalous reflector, which depends on the position, periodically repeated, as for its 
responsible supercells. 

Results about the performance of the metasurface can be seen in Figure 18. 

Since the incident wavelength, in practice, might not be exactly 1.55 µm, it has been 

taken as interest to show the performance for a range of wavelengths varying from 1.4 

to 1.7 µm in steps of 0.05 µm. As occurred for the refractor, slightly differences in the 

wavelength of the incident field will yield different phase profiles, due to the 

dependence of the 𝛼 parameter with respect to 𝜆଴. That will impact in the reflection 

angle. Results for the metasurface containing structural errors, for the same 

wavelengths, can be seen in Chapter 4. 
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a) 1.40 µm 

 
b) 1.45 µm 

 
c) 1.50 µm 

 
d) 1.55 µm 

 
e) 1.60 µm 

 
f) 1.65 µm 

 
g) 1.70 µm 

 
 

 
 

 
Figure 18 - Anomalous reflection of the electric field, 𝑥 component, performed by the metasurface for wavelengths 

ranging from 1.4 to 1.7 µm. Errors within the structure are not being considered.  

The proposed model for anomalous reflector presented results greater than 0.94 

of absolute value for the global phase range from −𝜋 to 𝜋. Its level of reflection 

exceeds the one of metals. The model developed a reflection angle of 17.62° and 

successfully worked as an all-dielectric perfect mirror, due to the very high level of 

reflection. 
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Many efforts have been developed by the researchers since 2013 to develop and 

improve all-dielectric metasurface as anomalous reflectors [30 - 39]. 

In [30] it was developed a perfect dielectric metamaterial mirror based on 

silicon cubes mounted on SiO2 substrate, with a thickness of 0.45 µm through utilizing 

Mie resonances in dielectric particles. The metamaterial presented reflectivity over 

99.999% and absorptivity smaller than 0.001% at 1.5 µm. Conditions for permittivity 

and permeability are discussed to create the perfect reflector. 

The perfect reflector based in [30] is, then, fabricated in [31], also based on Mie 

resonances, however utilizing cilindrical silicon resonators (instead of cubes) mounted 

on insulator substrate, as a wafer, following the conditions physical presented in [30]. 

The cylinders have height of 500 nm, diameter of 400 nm (yielding an aspect ratio of 

1.25), periodicity of 660 nm. Possibilities of fabrication methods are discussed 

(nanosphere lithography). 

In [32], large-scale metamaterials which idea was brought in [30, 31] to work as 

perfect mirrors are used for telecommunications band, fabricated in centimeter size. 

The utilized fabrication technique is nanosphere lithography and the built metamaterial 

is construction is highly tolerant to disorder. Results show maximum reflectance of 

99.7% at 1530 nm. Silicon cylinder resonators are mounted on a SiO2 layer of 2 µm, 

which is on a semi-infinite silicon substrate. 

In [33], grating arrays of amorphous titanium dioxide (αTiO2), mounted on 

glass ground plane, are utilized as high refractive index material for visible spectra, 

between 2.34 and 2.63. Perfect reflection occurs at 573 nm, 692 nm and 800 nm. The 

thickness of the ground plane is 400 nm. The αTiO2 resonators have height of 180 nm, 

width of 280 nm and period of 560 nm. 

Another perfect mirror for visible spectra is shown in [34], as a metasurface 

composed of TiO2 cylinders array embedded in air, which dimensions can be adjusted 

to control the position of the perfect reflection band across the visible frequencies. 

Radius and height of the cylinders are, respectively, 100 and 150 nm. Lattice constant 

is 360 nm. 
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[35] shows the first demonstration of an optical magnetic mirror, in 2007, which 

required the use of metals. When an electromagnetic wave incides on the magnetic 

mirror, it transmits the electrical field, while it reverses the magnetic field. It works as a 

superconductor for optical frequencies. 

In 2014 there was a substantial advance within magnetic mirrors: the 

experimental demonstration of the first all-dielectric magnetic mirror for optical 

frequencies [36]. Tellurium (Te) was employed as the resonator material, with high 

refractive index and low loss at infrared frequencies. Cubic-like tellurium dielectric 

resonators were used in two dimensional array mounted on a BaF2 substrate (n ~ 1.4). 

The height of the resonators is 1.7 µm and the base is 1.5 µm x 1.5 µm. Fabrication 

technique was e-beam lithography. 

A multi-purpose terahertz all-dielectric metasurface is shown in [37]. Cubic 

silicon resonators are mounted on a SiO2. The resonators can support both electric and 

magnetic Mie resonances and the tailoring of the interference between the two modes 

allows the control of the amplitude and phase of the reflected wave. Reflected beams 

include Bessel beams and vortex. This metasurface also works as a magnetic mirror in 

terahertz band. The fabrication process is described for the silicon magnetic mirror. 

A tunable all-dielectric metasurface capable of switching between a high 

transmitter and a high reflector device through changing the linear polarization of the 

excitation is shown in [38]. The metasurface consists in Si nanodimers disks on 

sapphire substrate. Fabrication required the use of electron beam lithography and 

reactive ion etching. The Si disks have diameter of 652 nm and height of 314 nm. 

Periodicity along the dimer axis is 1544 nm and 852 nm perpendicular to the axis. 

Results for λ = 1688 nm include transmission of 99% and reflection of 95% when 

polarization state is changed from TM to TE. For λ = 1718 nm the results were 

transmission of 86% and reflection of 77%. 

Another tunable all-dielectric nanograting metasurface is shown in [39]. The 

change between transmitter and reflector occurs laser-induced structural transitions for 

the visible and near infrared spectra. Amorphous germanium antimony telluride is 

mounted on silica substrate.  
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3.4 METALENS 

The next proposed model is an all-dielectric metalens [27] which, such as the 

anomalous refractor and reflector, was designed utilizing square blocks with 

contrasting refractive indexes materials. It has been planned to perform focusing of 

infrared waves, 1550 nm.  As a kind of metasurface, metalenses are also built with 

phase shifting elements which spacing is smaller than the wavelength’s [40], necessary 

to overcome thin-film and diffractive optics.  

Differently of the previous models, in which the wavefront shaping bended the 

incident planar wave into another planar wave, now the incident planar wave is shaped 

into spherical. The considered focal distance for the metalens, 𝑓, is a multiple of the 

operation wavelength, chosen to be 3.5 times the operation wavelength. For 𝜆଴ = 1550 

nm, the desired focal distance is 5425 nm. 

The phase profile 𝜑௅ is now quadratic, function of x and y according to 

𝜑௅(𝑥, 𝑦) =
ଶగ

ఒ
൫ඥ𝑥ଶ + 𝑦ଶ + 𝑓ଶ − 𝑓൯, equation (2.7). 

The same pattern of ABA type of unit cell employed for the anomalous 

refractor is used for the metalens, shown in Figure 19. The refractive index of the 

employed materials, considering the wavelength of 1550 nm, is 3.4757 for Si and 1 for 

air. 

 
Figure 19 - Unit cell of the metalens. Employed materials are Air, in gray, and Si, in blue. External dimensions are h1 

= 300 nm, h2 = 250 nm and d = 50 nm. Internal dimensions 𝒘𝒂 and 𝒘𝒃 are swept from 20 up to 230 nm. Incident 
electrical field is polarized in x direction. The space among the blocks is filled with air. 

From the unit cell, the absolute value and phase maps for the transmission 

coefficient are generated. These are the same maps the created for the anomalous 

refractor, which is expected, due to using the same unit cell of it. Consult Figures 6 and 

7.  
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A corresponding table of values, which came from Figures 6 and 7, was 

obtained considering those pairs of values for 𝑤௔, 𝑤௕ that were found to be more 

adequate for the unit cells to attend to global phase control along with high 

transmission that followed the quadratic phase profile planned for the metasurface. The 

smallest number of different pair values that sufficed the aforementioned conditions 

was 11, which stands for 11 differently fulfilled terns of unit cells – the angle steps of 

the discretized phase profile that cause the phase shifts on the electric field as it 

traverses the metasurface. These values are enlisted in Table 3.3: 

TABLE 3.3 
GEOMETRIC PARAMETERS OF THE UNIT CELL 

Cell / Param. 𝑤௔ 𝑤௕ 

1 211.47 50.88 

2 20 230 

3 20 143.53 

4 50.88 149.71 

5 174.41 211.47 

6 20 217.65 

7 32.35 69.41 

8 186.76 192.94 

9 20 168.24 

10 118.82 211.47 

11 217.65 75.58 

 
Table 3.3 - Geometric Parameter values for the pairs (𝑤௔ , 𝑤௕), in nm, for each angle step of the supercell 

of the metalens. 

It is already known from the refractor that high transmission values and global 

phase control were successfully obtained and that occurs to the metalens, as well. The 

determinant difference is in the quadratic phase profile that the metalens has to pursue, 

which is aperiodic.  
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Since the structure of the metalens is symmetric with respect to its center and it 

is very long, one half of it is shown in Figure 20, with a mirror mark. 

 
 
Figure 20 - Mirrored structure of the metalens (half of its structure). composed by Si, in blue, and air, in gray. Basic 

dimensions are the angle step Γ =  750  nm. The total length is Λ =  17250 nm. 

The phase profile, function of the position 𝑥, infinitely extends to the sides, as 

shown in Figure 21 in red. It was necessary, then, to simulate the structure for a number 

of angle steps that would properly discretize the ideal profile of the model. That 

implied in 23 angle steps, shown in blue, which makes 69 unit cells. As the profile 

extends to the sides, it only gets narrower, making it more difficult to reproduce it due 

to the angle step dimension of 750 nm. For convenience, Figure 21 shows the center of 

the phase profile as zero, while its position 𝑥 varies negatively to the left and positively 

to the right. 

Figure 21 shows the phase profile of the metalens, ideally considered to be a 

quadratic function of the position, 𝑥, of the structure. It has been designed 

approximately as successive angle steps that approximate the ideal quadratic function 

that is continuously shown in the Figure 21, in red, making it possible to concentrate 

the incident field in the designed focal plane of 3.5 times lambda, 5425 nm, of distance 

to the point where the wave starts interacting with the metasurface.  

It can be noticed in Figure 21 that, unlike the previous structures, since the 

phase profile is no longer periodic, the structure will not be as well. The phase profile 

has an infinite quadratic form, so it is necessary to choose how far the structure will 

reproduce it, in fact. This choice is bounded by the width of angle steps because the 

real angle steps have non null width, which is 750 nm, and it gets more and more 

difficult to reproduce the phase profile as 𝑥 increases, due to the corresponding fast 

growing increments in its phase, which leads to a poor discretization of the phase 

profile while x increases. According to these conditions, the maximum value of 𝑥 was 
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chosen to be 8625 nm, which means the whole structure has 17250 nm or 69 unit cells 

or 23 angle steps. 

 

 

Figure 21 – Ideal phase profile of the metalens, in red, approximated by 23 angle steps of 3 unit cells each, in blue. 

The built structure was, then simulated for the power density of the 

electromagnetic wave, given by the normalized Poynting vector, over the range from 

1.4 to 1.7 µm, shown in Figure 22: 
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a) 1.40 µm 

 
b) 1.45 µm 

 
c) 1.50 µm 

 
d) 1.55 µm 

 
e) 1.60 µm 

 
f) 1.65 µm 

 
g) 1.70 µm 

 
 

 
 

Figure 22 - Power density of the electric field for the wavelength, in W/m², represented by the normalized Poynting 
vector of the EMW, varying around 1550 nm, ranging from 1400 to 1700 nm. The focus of the metalens coincides 

with its focal plane, that has the following values: a) 6550 nm; b) 6350 nm; c) 5950 nm; d) 5500 nm; e) 5400 nm; f) 
5050 nm; g) 4700 nm. 

 

Figure 22 illustrates the capacity of concentrating the electric field as close as 

possible to the focal plane by showing the power density of the field. For the operation 

wavelength of 1550 nm, a small divergence of (1.37%) was found through the 

comparison with the desired focal plane of 5425 nm. The highest positive (above the 

desired focal plane) deviation found was 1125 nm, 20.7%, which occurred for the 
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wavelength of 1600 nm. The highest negative deviation to the designed focal plane was 

-725 nm, 13.4%, occurred at the wavelength of 1700 nm.  

Efforts towards the proposal, design, manufacturing and testing of all-dielectric 

metalenses have been made in [41]. Examples on the development of these very low-

loss lenses can be seen in [41 - 45]. 

Chapter 4 includes simulations that consider geometry errors within the 

structure for a more practical approach.   
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4 PERFORMANCE ANALYSIS OF THE DEVICES 
CONSIDERING GEOMETRY ERRORS 

4.1 INTRODUCTION 

In order to approximate the models to the real world performance, a primary 

step is to consider the insertion of geometry errors all over it. These geometry errors 

[46] mean how each part of the structure was built thinner or larger than the expected. 

The chosen philosophy to do so implies the inclusion of an error parameter, in length, 

that makes larger or thinner each inner square of the structure, depending on negative 

or positive errors, respectively. This was done over the structure of the models, by 

modifying the parameters 𝑤௔ and 𝑤௕. 

Ten structures were supposed to be generated for each proposed model, 

according to each error value in the set: {-10, -8, -6, -4, -2, 2, 4, 6, 8, 10}. Since both 

𝑤௔, 𝑤௕ start from 20 nm, the software didn’t allow to diminish more than 8 nm from 

the inner squares and the set was, then, diminished to be eight structural errors, in nm, 

{-8, -6, -4, -2, 2, 4, 6, 8}. 

For each considered wavelength in the range from 1.4 to 1.7 µm, in steps of 

0.05 µm, the performance for the eight considered errors is shown next. Negative 

values of geometry errors cause the dimensions 𝑤௔ and 𝑤௕ to become thinner and 

positive values yield these dimensions to become wider. 

Even though, in reality, a different error would occur for each square, the 

chosen method was considered to be accurate enough due to the many error 

possibilities that it brings to the structure. A real world structure, when simulated, can 

be considered as having and effective error, which will be, approximately, the closest 

as possible to one of the simulated errors within the set.  

The transmission and the reflection angle were obtained from the calculation of 

the Poynting vector angle using the x and y components of the vector to calculate its 

arctangent and then subtracting pi/2 rad (so that the angle would be referenced to the 

normal line to the metasurface), yielding: 
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 𝜃 = tanିଵ
𝑆௬

𝑆௫
−

𝜋

2
 (4.1) 

4.2 EFFECTS OF GEOMETRY ERRORS IN THE ANOMALOUS REFRACTOR 

The effect of geometry errors all over the structure of the anomalous refractor is 

expected to deviate the transmission angle from the ideal, which performance can be 

seen at the end of section 3.1. Sub-sections 4.2.1 to 4.2.7 show the performance of the 

device as its structure is afflicted by errors within each considered wavelength. 
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4.2.1 𝜆଴ = 1.40 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 23 - Influence of varied errors on the anomalous refractor for 𝝀𝟎 = 𝟏. 𝟒 µ𝒎. 

 

Figure 23 shows, in a qualitative form, the refraction occurring for the 

wavelength of 1.4 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from -

8 to 8 nm in steps of 2 nm. 
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Figure 24 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the supercell for the wavelength 

of 1.4 µm. 

 

To complement the results shown for the wave propagation of Figure 23, it is 

shown in Figure 24 how the transmission angle, 𝜃௧, varies from the designed angle of 

25° for the wavelength of 1.4 µm, along with the geometry errors. The wavelength of 

1.4 µm has a considerable influence in deviating 𝜃௧ in approximately -2.46°. The 

geometry errors among -8 µm and +8 µm increase the error in, respectively, +0.03° and 

+0.18°, approximately, related to the zero error condition (21.71°). 
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4.2.2 𝜆଴ = 1.45 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 25 - Influence of varied errors on the anomalous refractor for 𝝀𝟎 = 𝟏. 𝟒𝟓 (µ𝒎). 

 

Figure 25 shows, in a qualitative form, the refraction occurring for the 

wavelength of 1.45 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from 

-8 to 8 nm in steps of 2 nm. 
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Figure 26 – Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the supercell for the wavelength 
of 1.45 µm. 

 

To complement the results shown for the wave propagation of Figure 25, it is 

shown in Figure 26 how the transmission angle, 𝜃௧, varies from the designed angle of 

25° for the wavelength of 1.45 (µm), along with the geometry errors. The wavelength 

of 1.45 µm has a reasonable influence in deviating 𝜃௧ in approximately -1.42°. The 

geometry errors among -8 µm and +8 µm increase the error in, respectively, +0.01° and 

+0.01°, approximately, related to the zero error condition (22.75°). 
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4.2.3 𝜆଴ = 1.50 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 27 - Influence of varied errors on the anomalous refractor for 𝝀𝟎 = 𝟏. 𝟓 µ𝒎. 

 

Figure 27 shows, in a qualitative form, the refraction occurring for the 

wavelength of 1.5 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from -

8 to 8 nm in steps of 2 nm. 
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Figure 28 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the supercell for the wavelength 
of 1.5 µm. 

 

To complement the results shown for the wave propagation of Figure 27, it is 

shown in Figure 28 how the transmission angle, 𝜃௧, varies from the designed angle of 

25° for the wavelength of 1.5 µm, along with the geometry errors. The wavelength of 

1.5 µm has a reasonable influence in deviating 𝜃௧ in approximately -0.75°. The 

geometry errors among -8 µm and +8 µm increase the error in +0.15° and -0.10°, 

approximately, related to the zero error condition (23.42°). 
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4.2.4 𝜆଴ = 1.55 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 29 - Influence of varied errors on the anomalous refractor for 𝝀𝟎 = 𝟏. 𝟓𝟓 (µ𝒎). 

 

Figure 29 shows, in a qualitative form, the refraction occurring for the 

wavelength of 1.55 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from 

-8 to 8 nm in steps of 2 nm. 
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Figure 30 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the supercell for the wavelength 
of 1.55 µm. 

 

To complement the results shown for the wave propagation of Figure 29, it is 

shown in Figure 30 how the transmission angle, 𝜃௧, varies from the designed angle of 

25° for the wavelength of 1.55 µm, along with the geometry errors. The wavelength of 

1.55 µm has an insignificant influence in deviating 𝜃௧ in approximately 0.02°. The 

geometry errors among -8 µm and +8 µm increase reasonably the error in +0.15° and -

0.45°, approximately, related to the zero error condition (24.15°). 
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4.2.5 𝜆଴ = 1.60 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 31 - Influence of varied errors on the anomalous refractor for 𝝀𝟎 = 𝟏. 𝟔 µ𝒎. 

 

Figure 31 shows, in a qualitative form, the refraction occurring for the 

wavelength of 1.6 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from -

8 to 8 nm in steps of 2 nm. 
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Figure 32 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the supercell for the wavelength 
of 1.60 µm. 

 

To complement the results shown for the wave propagation of Figure 31, it is 

shown in Figure 32 how the transmission angle, 𝜃௧, varies from the designed angle of 

25° for the wavelength of 1.6 µm, along with the geometry errors. The wavelength of 

1.6 µm has a small influence in deviating 𝜃௧ in approximately +0.63°. The geometry 

errors among -8 µm and +8 µm increase substantially the error in +0.45° and -2.5°, 

approximately, related to the zero error condition (24.8°). 
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4.2.6 𝜆଴ = 1.65 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 33 - Influence of varied errors on the anomalous refractor for 𝝀𝟎 = 𝟏. 𝟔𝟓 µ𝒎. 

 

Figure 33 shows, in a qualitative form, the refraction occurring for the 

wavelength of 1.65 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from 

-8 to 8 nm in steps of 2 nm. 
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Figure 34 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the supercell for the wavelength 
of 1.65 µm. 

 

To complement the results shown for the wave propagation of Figure 33, it is 

shown in Figure 34 how the transmission angle, 𝜃௧, varies from the designed angle of 

25° for the wavelength of 1.65 µm, along with the geometry errors. The wavelength of 

1.65 µm has a small influence in deviating 𝜃௧ in approximately +0.8°. The geometry 

errors among -8 µm and +8 µm increasing meaninglessly the error in +0.15° and -

0.50°, approximately, related to the zero error condition (25.8°). 
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4.2.7 𝜆଴ = 1.70 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 35 - Influence of varied errors on the anomalous refractor for 𝝀𝟎 = 𝟏. 𝟕 µ𝒎. 

 

Figure 35 shows, in a qualitative form, the refraction occurring for the 

wavelength of 1.7 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from -

8 to 8 nm in steps of 2 nm. 
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Figure 36 - Analysis of the transmission angle 𝜽𝒕 as geometry errors are inserted in the supercell for the 
wavelength of 1.7 µm. 

 

To complement the results shown for the wave propagation of Figure 35, it is 

shown in Figure 36 how the transmission angle, 𝜃௧, varies from the designed angle of 

25° for the wavelength of 1.7 µm, along with the geometry errors. The wavelength of 

1.7 µm has a small influence in deviating 𝜃௧ in approximately +1.5°. The geometry 

errors among -8 µm and +8 µm increasing substantially the error in +0.2° and -1.85°, 

approximately, related to the zero error condition (26.6°). 
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4.3 EFFECTS OF GEOMETRY ERRORS IN THE ANOMALOUS REFLECTOR 

The effects of geometry errors in the parameters 𝑤௔, 𝑤௕ all over the structure of 

the anomalous refractor and reflector are expected to deviate both from the ideal 

performance by affecting the transmission and reflection angle, respectively. Sections 

4.3.1 to 4.3.7 show the results of the error insertions for each wavelength. 

4.3.1 𝜆଴ = 1.40 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 37 - Influence of varied errors on the anomalous reflector for 𝝀𝟎 = 𝟏. 𝟒 µ𝒎. 
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Figure 37 shows, in a qualitative form, the reflection occurring for the 

wavelength of 1.4 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from -

8 to 8 nm in steps of 2 nm. 

 
Figure 38 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell for the wavelength of 

1.4 µm. 

 

To complement the results shown for the wave propagation of Figure 37, it is 

shown in Figure 38 how the reflection angle, 𝜃௥, varies from the designed angle of 

17.17° for the wavelength of 1.4 µm, along with the geometry errors. The wavelength 

of 1.4 µm has a reasonable influence in deviating 𝜃௥ in approximately -0.97°. The 

geometry errors among -8 µm and +8 µm increasing meaninglessly the error in, 

respectively, -1.23° and -1.0°, approximately, related to the zero error condition 

(16.01°). 
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4.3.2 𝜆଴ = 1.45 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 39 - Influence of varied errors on the anomalous reflector for 𝝀𝟎 = 𝟏. 𝟒𝟓 µ𝒎. 

 

Figure 39 shows, in a qualitative form, the reflection occurring for the 

wavelength of 1.45 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from 

-8 to 8 nm in steps of 2 nm. 
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Figure 40 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell for the wavelength of 

1.45 µm. 

 

To complement the results shown for the wave propagation of Figure 39 it is 

shown in Figure 40 how the reflection angle, 𝜃௥, varies from the designed angle of 

17.17° for the wavelength of 1.45 µm, along with the geometry errors. The wavelength 

of 1.45 µm has a reasonable influence in deviating 𝜃௥ in approximately -0.74°. The 

geometry errors among -8 µm and +8 µm increasing meaninglessly the error in, 

respectively, -0.13° and -0.05°, approximately, related to the zero error condition 

(16.43°). 
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4.3.3 𝜆଴ = 1.50 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
j) Error of -2 nm 

 
f) Error of -4 nm 

 
g) Error of -6 nm 

 
h) Error of -8 nm 

Figure 41 - Influence of varied errors on the anomalous reflector for 𝝀𝟎 = 𝟏. 𝟓 µ𝒎. 

 

Figure 41 shows, in a qualitative form, the reflection occurring for the 

wavelength of 1.5 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from -

8 to 8 nm in steps of 2 nm. 
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Figure 42 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell for the wavelength of 

1.5 µm. 

 

To complement the results shown for the wave propagation of Figure 41 it is 

shown in Figure 42 how the reflection angle, 𝜃௥, varies from the designed angle of 

17.17° for the wavelength of 1.5 µm, along with the geometry errors. The wavelength 

of 1.5 µm has an insignificant influence in deviating 𝜃௥ in approximately +0.03°. The 

geometry errors among -8 µm and +8 µm increasing meaninglessly the error in, 

respectively, -0.11° and +0.13°, approximately, related to the zero error condition 

(17.20°). 
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4.3.4 𝜆଴ = 1.55 µ𝑚 

 
h) Error of +8 nm 

 
i) Error of +6 nm 

 
j) Error of +4 nm 

 
k) Error of +2 nm 

 
l) Zero error 

 
m) Error of -2 nm 

 
n) Error of -4 nm 

 
o) Error of -6 nm 

 
p) Error of -8 nm 

Figure 43 - Influence of varied errors on the anomalous reflector for 𝝀𝟎 = 𝟏. 𝟓𝟓 µ𝒎. 

 

Figure 43 shows, in a qualitative form, the reflection occurring for the 

wavelength of 1.55 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from 

-8 to 8 nm in steps of 2 nm. 
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Figure 44 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell for the wavelength of 

1.55 µm. 

 

To complement the results shown for the wave propagation of Figure 43 it is 

shown in Figure 44 how the reflection angle, 𝜃௥, varies from the designed angle of 

17.17° for the wavelength of 1.55 µm, along with the geometry errors. The wavelength 

of 1.55 µm has a very small influence in deviating 𝜃௥ in approximately +0.46°. The 

geometry errors among -8 µm and +8 µm increasing meaninglessly the error in, 

respectively, +0.1° and +0.05°, approximately, related to the zero error condition 

(17.63°). 
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4.3.5 𝜆଴ = 1.60 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 45 - Influence of varied errors on the anomalous reflector for 𝝀𝟎 = 𝟏. 𝟔 µ𝒎. 

 

Figure 45 shows, in a qualitative form, the reflection occurring for the 

wavelength of 1.6 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from -

8 to 8 nm in steps of 2 nm. 

  



                                                        84 

 

 
Figure 46 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell for the wavelength of 

1.6 µm. 

 

To complement the results shown for the wave propagation of Figure 45 it is 

shown in Figure 46 how the reflection angle, 𝜃௥, varies from the designed angle of 

17.17° for the wavelength of 1.6 µm, along with the geometry errors. The wavelength 

of 1.6 µm has a reasonable influence in deviating 𝜃௥ in approximately +1.08°. The 

geometry errors among -8 µm and +8 µm increasing meaninglessly the error in -0.15° 

and +0.18°, approximately, related to the zero error condition (18.25°). 
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4.3.6 𝜆଴ = 1.65 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
Error of -8 nm 

Figure 47 - Influence of varied errors on the anomalous reflector for 𝝀𝟎 = 𝟏. 𝟔𝟓 µ𝒎. 

 

Figure 47 shows, in a qualitative form, the reflection occurring for the 

wavelength of 1.65 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from 

-8 to 8 nm in steps of 2 nm. 
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Figure 48 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell for the wavelength of 

1.65 µm. 

 

To complement the results shown for the wave propagation of Figure 47 it is 

shown in Figure 48 how the reflection angle, 𝜃௥, varies from the designed angle of 

17.17° for the wavelength of 1.65 µm, along with the geometry errors. The wavelength 

of 1.65 µm has a small influence in deviating 𝜃௥ in approximately +1.07°. The 

geometry errors among -8 µm and +8 µm increasing meaninglessly the error in 0° and 

+0.20°, approximately, related to the zero error condition (18.24°). 
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4.3.7 𝜆଴ = 1.70 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
Error of -8 nm 

Figure 49 - Influence of varied errors on the anomalous reflector for 𝝀𝟎 = 𝟏. 𝟕 µ𝒎. 

 

Figure 49 shows, in a qualitative form, the reflection occurring for the 

wavelength of 1.7 µm, considering the geometry error range in the pair (𝑤௔, 𝑤௕) from -

8 to 8 nm in steps of 2 nm. 
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Figura 50 - Analysis of the reflection angle 𝜽𝒓 as geometry errors are inserted in the supercell for the wavelength of 

1.7 µm. 

 

To complement the results shown for the wave propagation of Figure 49 it is 

shown in Figure 50 how the reflection angle, 𝜃௥, varies from the designed angle of 

17.17° for the wavelength of 1.7 µm, along with the geometry errors. The wavelength 

of 1.7 µm has a reasonable influence in deviating 𝜃௥ in approximately +0.93°. The 

geometry errors among -8 µm and +8 µm increasing meaninglessly the error in -0.20° 

and +0.35°, approximately, related to the zero error condition (18.1°). 
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4.4 EFFECTS OF GEOMETRY ERRORS IN THE METALENS 

To find out how much the geometry errors influences the performance of the 

metalens, for each considered wavelength, one can compare its focal distance and its 

power density, as well as the square of the electric field, in the focal plane to the 

expected values of an ideal structure. 

The 𝑥 position of the focal plane of the proposed symmetric metalens is right in 

its horizontal center. It is, then, of greater importance, to obtain the vertical position 𝑦. 

In order to precisely obtain the position 𝑦 of the focal plane, the procedure was to 

extract the point of maximum value of the Poynting vector and its coordinate, which is 

the searched focal plane 𝑦 position. This coordinate also delivers the power density 

module on the focus 𝑦 coordinate. These two information will be shown on the legends 

of the next Figures, about the power density of the wave, 𝑆 (the Poynting vector), 

through the all-dielectric metalens. Same information will be brought as tables for 

easiness of consultation. 
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4.4.1 𝜆଴ = 1.40 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 51 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟒 µ𝒎. The focal plane position, 𝒚 in µm, and the 
power density of the wave on it, in MW/m2, are given in pairs (𝒚, 𝑺) as it follows: a) (𝟓. 𝟕𝟓𝟖𝟒;   𝟎. 𝟔𝟏𝟒𝟗𝟗) b) 

(𝟓. 𝟔𝟎𝟐𝟗;  𝟎. 𝟓𝟗𝟒𝟓𝟒)  c) (𝟓. 𝟔𝟗𝟎𝟐;   𝟎. 𝟓𝟖𝟕𝟎𝟏)  d) (𝟓. 𝟔𝟔𝟔𝟐;  𝟎. 𝟓𝟓𝟒𝟐)  e) (𝟓. 𝟓𝟏𝟑𝟐;  𝟎. 𝟓𝟏𝟗𝟒𝟔)  f) 
(𝟓. 𝟒𝟕𝟔𝟕;  𝟎. 𝟒𝟖𝟑𝟒𝟏)  g) (𝟓. 𝟓𝟒𝟓𝟎;  𝟎. 𝟒𝟔𝟒𝟐𝟔)  h) (𝟓. 𝟓𝟓𝟒𝟒;  𝟎. 𝟒𝟐𝟏𝟒𝟗)  i) (𝟓. 𝟒𝟐𝟗𝟑;  𝟎. 𝟑𝟖𝟔𝟓𝟔) 

 

Figure 51 shows, in a qualitative form, the power density of the wave reaching 

its highest  intensity in the region of the focal plane. It is considered for wavelength of 

1.4 µm, and the geometry error range in the pair (𝑤௔, 𝑤௕) from -8 to 8 nm in steps of 2 

nm.  
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Table 4.1 relates the power density of the EMW to the position of the focal 

plane of the metalens: 

Geometry error, in 
(nm) 

Focal plane position (y, 
in µm) 

Power density of the wave 
(S, in MW/m2) 

+8 5.7584 0.61499 
+6 5.5029 0.59454 
+4 5.6902 0.58701 
+2 5.6662 0.5542 
 0 5.5132 0.51946 
-2 5.4767 0.48341 
-4 5.5450 0.46426 
-6 5.5544 0.42149 
-8 5.4293 0.38656 

Table 4.1 – Focal plane position and power density of the wave related to each geometry error of the 

metalens, considering 𝜆଴ = 1.4 µ𝑚. 

For 𝜆଴ = 1.4 µ𝑚, the effects of the geometry errors which are propagated along 

the structure of the metalens and the power density of the incident wave on the focal 

plane are shown in Figure 51 and Table 4.1. Figure 51 makes possible to visualize the 

shifts of the focal plane, while Table 4.1 relates both the focal plane 𝑦 position and the 

power density of the wave (on the focal plane) to the applied geometry error over the 

structure. 

Related to the ideal supercell structure (zero error), the error of +8 nm 

introduces the highest deviation of focal plane position, which shifts up from 5.5132 to 

5.7584 µm, while the lowest focal plane position, 5.4293 µm, is set by the error of -8 

nm. 

The power density of the wave has the highest increase, from 0.51946 to 

0.61499 MW/m2 when the error varies from 0 to +8 nm. Its highest decrease occurs 

when the geometry error is -8 nm, which lowers the power density from 0.51946 to 

0.38656 MW/m2. 
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4.4.2 𝜆଴ = 1.45 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 52 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟒𝟓 µ𝒎. The focal plane position, 𝒚 in µm, and the 
power density of the wave on it, in MW/m2, are given in pairs (𝒚, 𝑺) as it follows: a) (𝟓. 𝟐𝟐𝟏𝟎;    𝟎. 𝟔𝟕𝟎𝟗𝟏) b) 

( 𝟓. 𝟏𝟒𝟕𝟖;  𝟎. 𝟔𝟓𝟎𝟓𝟗)  c) (𝟓. 𝟔𝟗𝟎𝟐;   𝟎. 𝟓𝟖𝟕𝟎𝟏)  d) (𝟓. 𝟐𝟐𝟑𝟓;  𝟎. 𝟓𝟖𝟑𝟗𝟔)  e) (𝟓. 𝟑𝟕𝟕𝟖;  𝟎. 𝟓𝟓𝟎𝟔𝟖)  f) 
(𝟓. 𝟐𝟒𝟐𝟏;  𝟎. 𝟓𝟏𝟑𝟏𝟗)  g) (𝟓. 𝟓𝟒𝟓𝟎;  𝟎. 𝟒𝟔𝟒𝟐𝟓)  h) (𝟓. 𝟓𝟓𝟔𝟕;  𝟎. 𝟒𝟑𝟓𝟖𝟖)  i) (𝟓. 𝟓𝟓𝟔𝟕;  𝟎. 𝟒𝟑𝟓𝟖𝟖) 

 

Figure 52 shows, in a qualitative form, the power density of the wave reaching 

its highest  intensity in the region of the focal plane. It is considered for wavelength of 

1.45 µm, and the geometry error range in the pair (𝑤௔, 𝑤௕) from -8 to 8 nm in steps of 

2 nm. 
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Table 4.2 relates the power density of the EMW to the position of the focal 

plane of the metalens: 

 

Geometry error, 
in (nm) 

Focal plane position (y, in 
µm) 

Power density of the wave 
(S, in MW/m2) 

+8 5.2210 0.67091 
+6 5.1478 065059 
+4 5.6902 0.58701 
+2 5.2235 0.58396 
 0 5.3778 0.55068 
-2 5.2421 0.51319 
-4 5.5450 0.46425 
-6 5.5567 0.43588 
-8 5.5567 0.43588 

Table 4.2 – Focal plane position and power density of the wave related to each geometry error of the 

metalens, considering 𝜆଴ = 1.45 µ𝑚. 

For 𝜆଴ = 1.45 µ𝑚, the effects of the geometry errors which are propagated 

along the structure of the metalens and the power density of the incident wave on the 

focal plane are shown in Figure 52 and Table 4.2. Figure 52 makes possible to visualize 

the shifts of the focal plane, while Table 4.2 relates both the focal plane 𝑦 position and 

the power density of the wave (on the focal plane) to the applied geometry error over 

the structure. 

Related to the ideal supercell structure (zero error), the error of +4 nm 

introduces the highest deviation of focal plane position, which shifts up from 5.3778 to 

5.6902 µm, while the lowest focal plane position, 5.1478 µm, is set by the error of +6 

nm. 

The power density of the wave has the highest increase, from 0.55068 to 

0.67091 MW/m2 when the error varies from 0 to +8 nm. Its highest decrease occurs 

when the geometry error is -8 nm, which lowers the power density from 0.55068 to 

0.43588 MW/m2. 
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4.4.3 𝜆଴ = 1.50 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 53 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟓 µ𝒎. The focal plane position, 𝒚, in µm, and the 
power density of the wave on it, in MW/m2, are given in pairs (𝒚, 𝑺) as it follows: a) (𝟒. 𝟕𝟖𝟕𝟐;  𝟎. 𝟔𝟗𝟐𝟖𝟎) b) 

( 𝟒. 𝟒𝟖𝟗𝟐;  𝟎. 𝟔𝟔𝟖𝟔𝟐)  c) (𝟓. 𝟎𝟕𝟑𝟒;   𝟎. 𝟔𝟗𝟏𝟖𝟗)  d) (𝟒. 𝟗𝟓𝟗𝟐;  𝟎. 𝟔𝟖𝟐𝟓𝟕)  e) (𝟓. 𝟏𝟏𝟒𝟒;  𝟎. 𝟔𝟕𝟕𝟔𝟖)  f) 
(𝟒. 𝟗𝟏𝟖𝟎;  𝟎. 𝟔𝟔𝟏𝟗𝟖)  g) (𝟓. 𝟎𝟖𝟓𝟎;  𝟎. 𝟔𝟐𝟒𝟐𝟔)  h) (𝟓. 𝟏𝟕𝟒𝟏;  𝟎. 𝟓𝟖𝟒𝟗𝟔)  i) (𝟓. 𝟎𝟎𝟐𝟖;  𝟎. 𝟓𝟑𝟒𝟑𝟔) 

Figure 53 shows, in a qualitative form, the power density of the wave reaching 

its highest  intensity in the region of the focal plane. It is considered for wavelength of 

1.5 µm, and the geometry error range in the pair (𝑤௔, 𝑤௕) from -8 to 8 nm in steps of 2 

nm. 
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Table 4.3 relates the power density of the EMW to the position of the focal 

plane of the metalens: 

 

Geometry error, 
in (nm) 

Focal plane position (y, in µm) Power density of the wave 
(S, in MW/m2) 

+8 4.7872 0.69280 
+6 4.4892 0.66862 
+4 5.0734 0.69189 
+2 4.9592 0.68257 
 0 5.1144 0.67768 
-2 4.9180 0.66198 
-4 5.0850 0.62426 
-6 5.1741 0.58496 
-8 5.0028 0.53436 

Table 4.3 – Focal plane position and power density of the wave related to each geometry error of the metalens, 
considering 𝛌𝟎 = 𝟏. 𝟓 µ𝐦. 

For 𝜆଴ = 1.5 µ𝑚, the effects of the geometry errors which are propagated along 

the structure of the metalens and the power density of the incident wave on the focal 

plane are shown in Figure 53 and Table 4.3. Figure 53 makes possible to visualize the 

shifts of the focal plane, while Table 4.3 relates both the focal plane 𝑦 position and the 

power density of the wave (on the focal plane) to the applied geometry error over the 

structure. 

Related to the ideal supercell structure (zero error), the error of -6 nm introduces 

the highest deviation of focal plane position, which shifts up from 5.1144 to 5.1741 

µm, while the lowest focal plane position, 4.4892 µm, is set by the error of +6 nm. 

The power density of the wave has the highest increase, from 0.67768 to 

0.69280 MW/m2 when the error varies from 0 to +8 nm. Its highest decrease occurs 

when the geometry error is -8 nm, which lowers the power density from 0.67768 to 

0.53436 MW/m2. 
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4.4.4 𝜆଴ = 1.55 µ𝑚 

a) Error of +8 nm 
 

b) Error of +6 nm 
 

c) Error of +4 nm 

d) Error of +2 nm 
 

e) Zero error 
 

f) Error of -2 nm 

g) Error of -4 nm 
 

h) Error of -6 nm 
 

i) Error of -8 nm 
Figure 54 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟓𝟓 µ𝒎. The focal plane position, 𝒚, in µm, and the 

power density of the wave on it, in MW/m2, are given in pairs (𝒚, 𝑺) as it follows: a) (𝟒. 𝟒𝟒𝟖𝟏;  𝟎. 𝟔𝟓𝟒𝟗𝟎) b) 
( 𝟒. 𝟒𝟖𝟗𝟐;  𝟎. 𝟔𝟐𝟓𝟖𝟔)  c) (𝟒. 𝟒𝟒𝟓𝟔;   𝟎. 𝟔𝟑𝟎𝟐𝟕)  d) (𝟒. 𝟓𝟑𝟎𝟎;  𝟎. 𝟔𝟒𝟎𝟔𝟗)  e) (𝟒. 𝟑𝟒𝟎𝟒;  𝟎. 𝟔𝟓𝟔𝟕𝟕)  f) 

(𝟒. 𝟔𝟐𝟓𝟔;  𝟎. 𝟔𝟕𝟏𝟓𝟒)  g) (𝟒. 𝟔𝟓𝟗𝟒;  𝟎. 𝟔𝟓𝟗𝟗𝟎)  h) (𝟒. 𝟕𝟓𝟏𝟓;  𝟎. 𝟔𝟒𝟗𝟖𝟕)  i) (𝟒. 𝟓𝟔𝟑𝟎;  𝟎. 𝟔𝟑𝟎𝟎𝟖) 

 

Figure 54 shows, in a qualitative form, the power density of the wave reaching 

its highest  intensity in the region of the focal plane. It is considered for wavelength of 

1.55 µm, and the geometry error range in the pair (𝑤௔, 𝑤௕) from -8 to 8 nm in steps of 

2 nm. 
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Table 4.4 relates the power density of the EMW to the position of the focal 

plane of the metalens: 

 

Geometry error, 
in (nm) 

Focal plane position (y, in µm) Power density of the 
wave (S, in MW/m2) 

+8 4.4481 0.65490 
+6 4.4892 0.62586 
+4 4.4456 0.63027 
+2 4.5300 0.64069 
 0 4.3404 0.65677 
-2 4.6256 0.67154 
-4 4.6594 0.65990 
-6 4.7515 0.64897 
-8 4.5630 0.63008 

Table 4.4 – Focal plane position and power density of the wave related to each geometry error of the metalens, 
considering 𝛌𝟎 = 𝟏. 𝟓𝟓 µ𝐦. 

For 𝜆଴ = 1.55 µ𝑚, the effects of the geometry errors which are propagated 

along the structure of the metalens and the power density of the incident wave on the 

focal plane are shown in Figure 54 and Table 4.4. Figure 54 makes possible to visualize 

the shifts of the focal plane, while Table 4.4 relates both the focal plane 𝑦 position and 

the power density of the wave (on the focal plane) to the applied geometry error over 

the structure. 

Related to the ideal supercell structure (zero error), the error of -6 nm introduces 

the highest deviation of focal plane position, which shifts up from 4.3404 to 4.7515 

µm, while the lowest focal plane position, 4.3404 µm, is set by the ideal (zero error) 

supercell geometry. 

The power density of the wave has the highest increase, from 0.65677 to 

0.67154 MW/m2 when the error varies from 0 to -2 nm. Its highest decrease occurs 

when the geometry error is -8 nm, which lowers the power density from 0.67768 to 

0.62586 MW/m2. 
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4.4.5 𝜆଴ = 1.60 µ𝑚 

a) Error of +8 nm 
 

b) Error of +6 nm 
 

c) Error of +4 nm 

d) Error of +2 nm 
 

e) Zero error 
 

f) Error of -2 nm 

g) Error of -4 nm 
 

h) Error of -6 nm 
 

i) Error of -8 nm 
Figure 55 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟔 µ𝒎. The focal plane position, 𝒚, in µm, and the 

power density of the wave on it, in MW/m2, are given in pairs (𝒚, 𝑺) as it follows: a) (𝟒. 𝟒𝟒𝟖𝟏;  𝟎. 𝟔𝟒𝟓𝟔𝟓) b) 
( 𝟒. 𝟒𝟖𝟗𝟐;  𝟎. 𝟔𝟔𝟖𝟔𝟐)  c) (𝟒. 𝟒𝟒𝟓𝟔;   𝟎. 𝟕𝟎𝟎𝟓𝟏)  d) (𝟒. 𝟑𝟏𝟗𝟔;  𝟎. 𝟕𝟎𝟑𝟒𝟒)  e) (𝟒. 𝟑𝟒𝟎𝟒;  𝟎. 𝟕𝟎𝟗𝟒𝟎)  f) 

(𝟒. 𝟓𝟎𝟏𝟗;  𝟎. 𝟔𝟖𝟒𝟗𝟓)  g) (𝟒. 𝟑𝟐𝟔𝟕;  𝟎. 𝟔𝟓𝟏𝟒𝟓)  h) (𝟒. 𝟒𝟐𝟏𝟗;  𝟎. 𝟓𝟖𝟖𝟓𝟎)  i) (𝟒. 𝟓𝟔𝟑𝟎;  𝟎. 𝟓𝟑𝟒𝟐𝟎) 

 

Figure 55 shows, in a qualitative form, the power density of the wave reaching 

its highest  intensity in the region of the focal plane. It is considered for wavelength of 

1.6 µm, and the geometry error range in the pair (𝑤௔, 𝑤௕) from -8 to 8 nm in steps of 2 

nm. 
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Table 4.5 relates the power density of the EMW to the position of the focal 

plane of the metalens: 

 

Geometry error, in 
(nm) 

Focal plane position 
(y, in µm) 

Power density of the wave (S, in 
MW/m2) 

+8 4.4481 0.64565 
+6 4.4892 0.66862 
+4 4.4456 0.70051 
+2 4.3196 0.70344 
 0 4.3404 0.70940 
-2 4.5019 0.68495 
-4 4.3267 0.65145 
-6 4.4219 0.58850 
-8 4.5630 0.53420 

Table 4.5 – Focal plane position and power density of the wave related to each geometry error of the metalens, 
considering 𝛌𝟎 = 𝟏. 𝟔 µ𝐦. 

For 𝜆଴ = 1.6 µ𝑚, the effects of the geometry errors which are propagated along 

the structure of the metalens and the power density of the incident wave on the focal 

plane are shown in Figure 55 and Table 4.5. Figure 55 makes possible to visualize the 

shifts of the focal plane, while Table 4.5 relates both the focal plane 𝑦 position and the 

power density of the wave (on the focal plane) to the applied geometry error over the 

structure. 

Related to the ideal supercell structure (zero error), the error of -8 nm introduces 

the highest deviation of focal plane position, which shifts up from 4.3404 to 4.5630µm, 

while the lowest focal plane position, 4.3196 µm, is set by the error of +2 nm. 

The highest power density of the wave is 0.70940 MW/m2 and occurs for the 

ideal supercell (for zero geometry error). The highest decrease of the power density 

occurs when the geometry error is -8 nm, which lowers the power density from 0.70940 

to 0.53420 MW/m2. 
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4.4.6 𝜆଴ = 1.65 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 56 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟔𝟓 µ𝒎. The focal plane position, 𝒚, in µm, and the 
power density of the wave on it, in MW/m2, are given in pairs (𝒚, 𝑺) as it follows: a) (𝟒. 𝟏𝟏𝟗𝟏;  𝟎. 𝟓𝟏𝟖𝟔𝟓) b) 

( 𝟒. 𝟎𝟔𝟒𝟖;  𝟎. 𝟓𝟐𝟔𝟓𝟕)  c) (𝟒. 𝟏𝟐𝟓𝟑;   𝟎. 𝟓𝟒𝟎𝟕𝟔)  d) (𝟑. 𝟗𝟗𝟓𝟕;  𝟎. 𝟓𝟓𝟏𝟏𝟔)  e) (𝟒. 𝟎𝟐𝟒𝟓;  𝟎. 𝟓𝟕𝟗𝟑𝟐)  f) 
(𝟒. 𝟏𝟖𝟓𝟕;  𝟎. 𝟔𝟏𝟕𝟐𝟓)  g) (𝟒. 𝟎𝟎𝟏𝟖;  𝟎. 𝟔𝟔𝟓𝟑𝟗)  h) (𝟑. 𝟗𝟖𝟕𝟏;  𝟎. 𝟕𝟏𝟗𝟕𝟎)  i) (𝟒. 𝟏𝟏𝟖𝟕;  𝟎. 𝟕𝟓𝟗𝟕𝟖) 

Figure 56 shows, in a qualitative form, the power density of the wave reaching 

its highest  intensity in the region of the focal plane. It is considered for wavelength of 

1.65 µm, and the geometry error range in the pair (𝑤௔, 𝑤௕) from -8 to 8 nm in steps of 

2 nm. 
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Table 4.6 relates the power density of the EMW to the position of the focal 

plane of the metalens: 

 

Geometry error, in (nm) Focal plane position 
(y, in µm) 

Power density of the wave 
(S, in MW/m2) 

+8 4.1191 0.51865 
+6 4.0648 0.52657 
+4 4.1253 0.54076 
+2 3.9957 0.55116 
 0 4.0245 0.57932 
-2 4.1857 0.61725 
-4 4.0018 0.66539 
-6 3.9871 0.71970 
-8 4.1187 0.75978 

Table 4.6 – Focal plane position and power density of the wave related to each geometry error of the metalens, 
considering 𝛌𝟎 = 𝟏. 𝟔𝟓 µ𝐦. 

For 𝜆଴ = 1.65 µ𝑚, the effects of the geometry errors which are propagated 

along the structure of the metalens and the power density of the incident wave on the 

focal plane are shown in Figure 56 and Table 4.6. Figure 56 makes possible to visualize 

the shifts of the focal plane, while Table 4.6 relates both the focal plane 𝑦 position and 

the power density of the wave (on the focal plane) to the applied geometry error over 

the structure. 

Related to the ideal supercell structure (zero error), the error of -2 nm introduces 

the highest deviation of focal plane position, which shifts up from 4.0245 to 4.1857 

µm, while the lowest focal plane position, 3.9871 µm, is set by the error of -6 nm. 

The power density of the wave has the highest increase, from 0.57932 to 75978 

MW/m2 when the error varies from 0 to -8 nm. Its highest decrease occurs when the 

geometry error is +8 nm, which lowers the power density from 0.57932 to 0.51685 

MW/m2. 
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4.4.7 𝜆଴ = 1.70 µ𝑚 

 
a) Error of +8 nm b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 57 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟕 µ𝒎. The focal plane position, 𝒚, in µm, and the 
power density of the wave on it, in MW/m2, are given in pairs (𝒚, 𝑺) as it follows: a) (𝟑. 𝟔𝟓𝟖𝟐;  𝟎. 𝟓𝟏𝟓𝟑𝟖) b) 

(𝟑. 𝟕𝟑𝟏𝟗;  𝟎. 𝟓𝟑𝟎𝟕𝟖)  c) (𝟑. 𝟕𝟗𝟕𝟐;   𝟎. 𝟓𝟔𝟏𝟔𝟐)  d) (𝟑. 𝟔𝟕𝟐𝟖;  𝟎. 𝟓𝟔𝟏𝟔𝟐)  e) (𝟑. 𝟕𝟏𝟑𝟓;  𝟎. 𝟓𝟔𝟖𝟑𝟗)  f) 
(𝟑. 𝟕𝟐𝟑𝟗;  𝟎. 𝟓𝟕𝟗𝟓𝟔)  g) (𝟑. 𝟓𝟔𝟒𝟕;  𝟎. 𝟓𝟖𝟓𝟐𝟕)  h) (𝟑. 𝟔𝟓𝟐𝟑;  𝟎. 𝟓𝟖𝟒𝟑𝟎)  i) (𝟑. 𝟔𝟔𝟏𝟕;  𝟎. 𝟓𝟗𝟒𝟔𝟓) 

 

Figure 57 shows, in a qualitative form, the power density of the wave reaching 

its highest  intensity in the region of the focal plane. It is considered for wavelength of 

1.7 µm, and the geometry error range in the pair (𝑤௔, 𝑤௕) from -8 to 8 nm in steps of 2 

nm. 
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The following Table relates the power density of the EMW to the position of the 

focal plane of the metalens: 

Geometry error, in (nm) Focal plane position (y, 
in µm) 

Power density of the wave 
(S, in MW/m2) 

+8 3.6582 0.51538 
+6 3.7319 0.53078 
+4 3.7972 0.56162 
+2 3.6728 0.56162 
 0 3.3778 0.56839 
-2 3.5241 0.57956 
-4 3.5450 0.58527 
-6 3.5567 0.58430 
-8 3.5567 0.59465 

Table 4.7 – Focal plane position and power density of the wave related to each geometry error of the metalens, 
considering 𝛌𝟎 = 𝟏. 𝟕 µ𝐦. 

For 𝜆଴ = 1.7 µ𝑚, the effects of the geometry errors which are propagated along 

the structure of the metalens and the power density of the incident wave on the focal 

plane are shown in Figure 57 and Table 4.7. Figure 57 makes possible to visualize the 

shifts of the focal plane, while Table 4.7 relates both the focal plane 𝑦 position and the 

power density of the wave (on the focal plane) to the applied geometry error over the 

structure. 

Related to the ideal supercell structure (zero error), the error of +4 nm 

introduces the highest deviation of focal plane position, which shifts up from 3.3778 to 

3.7972 µm, while the lowest focal plane position, 3.3778 µm, is set by the ideal (zero 

error) supercell geometry. 

The power density of the wave has the highest increase, from 0.56839 to 

0.59465 MW/m2 when the error varies from 0 to -8 nm. Its highest decrease occurs 

when the geometry error is +8 nm, which lowers the power density from 0.56839 to 

0.51538 MW/m2. 
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4.4.8 Effect of geometry errors on the square electric field for 𝜆଴ = 1.40 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 58 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟒 µ𝒎. The focal plane position, 𝒚 in µm, and the 
square electric field of the wave on it, in MV2/m2, are given in pairs ൫𝒚, 𝑬𝟐൯ as it follows: a) (𝟓. 𝟕𝟓𝟖𝟒;   𝟒𝟎𝟏. 𝟐𝟓𝟏𝟔) 

b) (𝟓. 𝟔𝟎𝟐𝟗;  𝟑𝟖𝟗. 𝟔𝟒𝟓𝟗)  c) (𝟓. 𝟔𝟗𝟎𝟐;  𝟑𝟓𝟑. 𝟖𝟗𝟏𝟒)  d) (𝟓. 𝟔𝟔𝟔𝟐;  𝟑𝟔𝟓. 𝟎𝟔𝟗𝟗)  e) (𝟓. 𝟓𝟏𝟑𝟐;  𝟑𝟒𝟎. 𝟔𝟒𝟓𝟐)  f) 
(𝟓. 𝟒𝟕𝟔𝟕;  𝟑𝟏𝟓. 𝟑𝟗𝟓𝟑)  g) (𝟓. 𝟓𝟒𝟓𝟎;  𝟑𝟎𝟐. 𝟔𝟖𝟖𝟑)  h) (𝟓. 𝟓𝟓𝟒𝟒;  𝟐𝟕𝟔. 𝟔𝟒𝟗𝟎)  i) (𝟓. 𝟒𝟐𝟗𝟑;  𝟐𝟓𝟎. 𝟑𝟓𝟏𝟗) 
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Table 4.8 relates the square electric field of the EMW to the position of the 

focal plane of the metalens: 

 

Geometry error, in 
(nm) 

Focal plane position (y, 
in µm) 

Square electric field (E2, in 
MV2/m2) 

+8 5.7584 401.2516 
+6 5.5029 389.6459 
+4 5.6902 353.8914 
+2 5.6662 365.0699 
 0 5.5132 340.6452 
-2 5.4767 315.3953 
-4 5.5450 302.6883 
-6 5.5544 276.6490 
-8 5.4293 250.3519 

Table 4.8 – Focal plane position and square electric field of the wave related to each geometry error of the 

metalens, considering 𝜆଴ = 1.4 µ𝑚. 

For 𝜆଴ = 1.4 µ𝑚, the effects of the geometry errors which are propagated along 

the structure of the metalens and the square electric field of the incident wave on the 

focal plane are shown in Figure 58 and Table 4.8. Figure 58 makes possible to visualize 

the shifts of the focal plane, while Table 4.8 relates both the focal plane 𝑦 position and 

the square electric field of the wave (on the focal plane) to the applied geometry error 

over the structure. 

Related to the ideal supercell structure (zero error), the error of +8 nm 

introduces the highest deviation of focal plane position, which shifts up from 5.5132 to 

5.7584 µm, while the lowest focal plane position, 5.4293 µm, is set by the error of -8 

nm. 

The square electric field, 𝐸ଶ, of the wave has the highest increase, from 

340.6452 to 401.2516 MV2/m2 when the error varies from 0 to +8 nm. Its highest 

decrease occurs when the geometry error is -8 nm, which lowers the square electric 

field from 340.6452 to 250.3519 MV2/m2. 
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4.4.9 Effect of geometry errors on the square electric field for 𝜆଴ = 1.45 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 59 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟒𝟓 µ𝒎. The focal plane position, 𝒚 in µm, and the 
square electric field of the wave on it, in MV2/m2, are given in pairs ൫𝒚, 𝑬𝟐൯ as it follows: a) (𝟓. 𝟐𝟐𝟏𝟎;   𝟒𝟑𝟐. 𝟗𝟑𝟗𝟐) 

b) (𝟓. 𝟏𝟒𝟕𝟖;  𝟒𝟏𝟓. 𝟓𝟒𝟕𝟎)  c) (𝟓. 𝟔𝟗𝟎𝟐;   𝟑𝟓𝟑. 𝟖𝟗𝟏𝟒)  d) (𝟓. 𝟐𝟐𝟑𝟓;  𝟑𝟕𝟏. 𝟓𝟖𝟕𝟐)  e) (𝟓. 𝟑𝟕𝟕𝟖;  𝟑𝟓𝟐. 𝟒𝟓𝟑𝟐)  f) 
(𝟓. 𝟐𝟒𝟐𝟏;  𝟑𝟐𝟒. 𝟔𝟑𝟒𝟓)  g) (𝟓. 𝟓𝟒𝟓𝟎;  𝟑𝟎𝟔. 𝟔𝟏𝟕𝟖)  h) (𝟓. 𝟓𝟓𝟔𝟕;  𝟐𝟗𝟒. 𝟕𝟓𝟖𝟕)  i) (𝟓. 𝟓𝟓𝟔𝟕;  𝟐𝟕𝟐. 𝟐𝟕𝟐𝟗) 
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Table 4.9 relates the square electric field of the EMW to the position of the 

focal plane of the metalens: 

 

Geometry error, in 
(nm) 

Focal plane position (y, 
in µm) 

Square electric field (E2, in 
MV2/m2) 

+8 5.2210 432.9392 
+6 5.1478 415.5470 
+4 5.6902 353.8914 
+2 5.2235 371.5872 
 0 5.3778 352.4532 
-2 5.5351 324.6345 
-4 5.5450 306.6178 
-6 5.5567 294.7587 
-8 5.5567 272.2729 

Table 4.9 – Focal plane position and square electric field of the wave related to each geometry error of the 

metalens, considering 𝜆଴ = 1.45 µ𝑚. 

For 𝜆଴ = 1.45 µ𝑚, the effects of the geometry errors which are propagated 

along the structure of the metalens and the square electric field of the incident wave on 

the focal plane are shown in Figure 59 and Table 4.9. Figure 59 makes possible to 

visualize the shifts of the focal plane, while Table 4.9 relates both the focal plane 𝑦 

position and the square electric field of the wave (on the focal plane) to the applied 

geometry error over the structure. 

Related to the ideal supercell structure (zero error), the error of +4 nm 

introduces the highest deviation of focal plane position, which shifts up from 5.3778 to 

5.6902 µm, while the lowest focal plane position, 5.1478 µm, is set by the error of +6 

nm. 

The square electric field, 𝐸ଶ, of the wave has the highest increase, from 

352.4532 to 432.9392 MV2/m2 when the error varies from 0 to +8 nm. Its highest 

decrease occurs when the geometry error is -8 nm, which lowers the square electric 

field from 352.4532 to 279.2729 MV2/m2. 
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4.4.10 Effect of geometry errors on the square electric field for 𝜆଴ = 1.50 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 60 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟓𝟎 µ𝒎. The focal plane position, 𝒚 in µm, and the 
square electric field of the wave on it, in MV2/m2, are given in pairs ൫𝒚, 𝑬𝟐൯ as it follows: a) (𝟒. 𝟕𝟖𝟕𝟐;   𝟒𝟒𝟏. 𝟏𝟗𝟏𝟒) 

b) (𝟒. 𝟒𝟖𝟗𝟐;  𝟒𝟏𝟐. 𝟗𝟎𝟓𝟒)  c) (𝟓. 𝟎𝟕𝟑𝟒;   𝟒𝟒𝟏. 𝟔𝟎𝟖𝟎)  d) (𝟒. 𝟗𝟓𝟗𝟐;  𝟒𝟑𝟓. 𝟕𝟖𝟕𝟔)  e) (𝟓. 𝟏𝟏𝟒𝟒;  𝟒𝟑𝟐. 𝟔𝟕𝟎𝟎)  f) 
(𝟒. 𝟗𝟏𝟖𝟎;  𝟒𝟐𝟐. 𝟏𝟖𝟒𝟖)  g) (𝟓. 𝟎𝟖𝟓𝟎;  𝟑𝟗𝟗. 𝟑𝟔𝟏𝟗)  h) (𝟓. 𝟏𝟕𝟒𝟏;  𝟑𝟕𝟔. 𝟎𝟖𝟒𝟖)  i) (𝟓. 𝟎𝟎𝟐𝟖;  𝟑𝟒𝟏. 𝟑𝟕𝟔𝟑) 
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Table 4.10 relates the square electric field of the EMW to the position of the 

focal plane of the metalens: 

 

Geometry error, in 
(nm) 

Focal plane position (y, 
in µm) 

Square electric field (E2, in 
MV2/m2) 

+8 4.7872 441.1914 
+6 4.4892 412.9054 
+4 5.0734 441.6080 
+2 4.9592 435.7876 
 0 5.1144 432.6700 
-2 4.9180 422.1848 
-4 5.0850 399.3619 
-6 5.1741 376.0848 
-8 5.0028 341.3763 

Table 4.10 – Focal plane position and square electric field of the wave related to each geometry error of 

the metalens, considering 𝜆଴ = 1.50 µ𝑚. 

For 𝜆଴ = 1.5 µ𝑚, the effects of the geometry errors which are propagated along 

the structure of the metalens and the square electric field of the incident wave on the 

focal plane are shown in Figure 60 and Table 4.10. Figure 60 makes possible to 

visualize the shifts of the focal plane, while Table 4.10 relates both the focal plane 𝑦 

position and the square electric field of the wave (on the focal plane) to the applied 

geometry error over the structure. 

Related to the ideal supercell structure (zero error), the error of -6 nm introduces 

the highest deviation of focal plane position, which shifts up from 5.1144 to 5.1741 

µm, while the lowest focal plane position, 4.4892 µm, is set by the error of +6 nm. 

The square electric field, 𝐸ଶ, of the wave has the highest increase, from 

432.6700 to 441.6080 MV2/m2 when the error varies from 0 to +4 nm. Its highest 

decrease occurs when the geometry error is -8 nm, which lowers the square electric 

field from 432.6700 to 341.3763 MV2/m2. 
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4.4.11 Effect of geometry errors on the square electric field for 𝜆଴ = 1.55 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 61 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟓𝟓 µ𝒎. The focal plane position, 𝒚 in µm, and the 
square electric field of the wave on it, in MV2/m2, are given in pairs ൫𝒚, 𝑬𝟐൯ as it follows: a) (𝟒. 𝟒𝟒𝟖𝟏;  𝟒𝟎𝟖. 𝟖𝟐𝟎𝟒) 

b) (𝟒. 𝟒𝟖𝟗𝟐;  𝟑𝟗𝟎. 𝟓𝟑𝟗𝟑)  c) (𝟒. 𝟒𝟒𝟓𝟔;   𝟑𝟖𝟗. 𝟏𝟕𝟖𝟑)  d) (𝟒. 𝟓𝟑𝟎𝟎;  𝟑𝟗𝟗. 𝟐𝟒𝟎𝟎)  e) (𝟒. 𝟑𝟒𝟎𝟒;  𝟒𝟎𝟔. 𝟓𝟔𝟔𝟓)  f) 
(𝟒. 𝟔𝟐𝟓𝟔;  𝟒𝟏𝟖. 𝟐𝟏𝟑𝟏)  g) (𝟒. 𝟔𝟓𝟗𝟒;  𝟒𝟏𝟏. 𝟑𝟗𝟔𝟔)  h) (𝟒. 𝟕𝟓𝟏𝟓;  𝟒𝟎𝟓. 𝟔𝟓𝟓𝟒)  i) (𝟒. 𝟓𝟔𝟑𝟎;  𝟑𝟗𝟏. 𝟎𝟐𝟐𝟗) 
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Table 4.11 relates the square electric field of the EMW to the position of the 

focal plane of the metalens: 

 

Geometry error, in 
(nm) 

Focal plane position (y, 
in µm) 

Square electric field (E2, in 
MV2/m2) 

+8 4.4481 402.8204 
+6 4.4892 390.5393 
+4 4.4456 389.1783 
+2 4.5300 399.2400 
 0 4.3404 406.5665 
-2 4.6256 418.2131 
-4 4.6594 411.3966 
-6 4.7515 405.6554 
-8 4.5630 391.0229 

Table 4.11 – Focal plane position and square electric field of the wave related to each geometry error of 

the metalens, considering 𝜆଴ = 1.55 µ𝑚. 

For 𝜆଴ = 155 µ𝑚, the effects of the geometry errors which are propagated 

along the structure of the metalens and the square electric field of the incident wave on 

the focal plane are shown in Figure 61 and Table 4.11. Figure 61 makes possible to 

visualize the shifts of the focal plane, while Table 4.11 relates both the focal plane 𝑦 

position and the square electric field of the wave (on the focal plane) to the applied 

geometry error over the structure. 

Related to the ideal supercell structure (zero error), the error of -6 nm introduces 

the highest deviation of focal plane position, which shifts up from 4.3404 to 4.7515 

µm, while the lowest focal plane position, 4.3404 µm, is set by the ideal (zero error) 

supercell geometry. 

The square electric field, 𝐸ଶ, of the wave has the highest increase, from 

406.5665 to 418.2131 MV2/m2 when the error varies from 0 to -2 nm. Its highest 

decrease occurs when the geometry error is +4 nm, which lowers the square electric 

field from 406.5665 to 389.1783 MV2/m2. 
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4.4.12 Effect of geometry errors on the square electric field for 𝜆଴ = 1.60 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 62 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟔𝟎 µ𝒎. The focal plane position, 𝒚 in µm, and the 
square electric field of the wave on it, in MV2/m2, are given in pairs ൫𝒚, 𝑬𝟐൯ as it follows: a) (𝟒. 𝟒𝟒𝟖𝟏;   𝟒𝟏𝟎. 𝟗𝟑𝟑𝟕) 

b) (𝟒. 𝟒𝟖𝟗𝟐;  𝟒𝟐𝟔. 𝟏𝟖𝟏𝟎)  c) (𝟒. 𝟒𝟒𝟓𝟔;  𝟒𝟒𝟏. 𝟗𝟎𝟏𝟗)  d) (𝟒. 𝟑𝟏𝟗𝟔;  𝟒𝟒𝟑. 𝟓𝟎𝟑𝟗)  e) (𝟒. 𝟑𝟒𝟎𝟒;  𝟒𝟒𝟓. 𝟕𝟎𝟓𝟑)  f) 
(𝟒. 𝟓𝟎𝟏𝟗;  𝟒𝟑𝟐. 𝟑𝟏𝟒𝟖)  g) (𝟒. 𝟑𝟐𝟔𝟕;  𝟒𝟎𝟓. 𝟎𝟕𝟎𝟐)  h) (𝟒. 𝟒𝟐𝟏𝟗;  𝟑𝟔𝟔. 𝟒𝟕𝟑𝟑)  i) (𝟒. 𝟓𝟔𝟑𝟎;  𝟑𝟑𝟑. 𝟒𝟖𝟔𝟖) 

  



                                                        

113 

 
Table 4.12 relates the square electric field of the EMW to the position of the 

focal plane of the metalens: 

 

Geometry error, in 
(nm) 

Focal plane position (y, 
in µm) 

Square electric field (E2, in 
MV2/m2) 

+8 4.4481 410.9337 
+6 4.4892 426.1810 
+4 4.4456 441.9019 
+2 4.3196 443.5039 
 0 4.3404 445.7053 
-2 4.5019 432.3148 
-4 4.3267 405.0702 
-6 4.4219 366.4733 
-8 4.5630 333.4868 

Table 4.12 – Focal plane position and square electric field of the wave related to each geometry error of 

the metalens, considering 𝜆଴ = 1.60 µ𝑚. 

For 𝜆଴ = 1.6 µ𝑚, the effects of the geometry errors which are propagated along 

the structure of the metalens and the square electric field of the incident wave on the 

focal plane are shown in Figure 62 and Table 4.12. Figure 62 makes possible to 

visualize the shifts of the focal plane, while Table 4.12 relates both the focal plane 𝑦 

position and the square electric field of the wave (on the focal plane) to the applied 

geometry error over the structure. 

Related to the ideal supercell structure (zero error), the error of -8 nm introduces 

the highest deviation of focal plane position, which shifts up from 4.3404 to 4.5630µm, 

while the lowest focal plane position, 4.3196 µm, is set by the error of +2 nm. 

The square electric field, 𝐸ଶ, of the wave has the highest value, of 445.7053 

MV2/m2 when the structure is ideal (the geometry error is zero). Its highest decrease 

occurs when the geometry error is +8 nm, which lowers the square electric field from 

445.7053 to 333.4868 MV2/m2. 
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4.4.13 Effect of geometry errors on the square electric field for 𝜆଴ = 1.65 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm  

i) Error of -8 nm 

Figure 63 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟔𝟓 µ𝒎. The focal plane position, 𝒚 in µm, and the 
square electric field of the wave on it, in MV2/m2, are given in pairs ൫𝒚, 𝑬𝟐൯ as it follows: a) (𝟒. 𝟏𝟏𝟗𝟏;   𝟑𝟏𝟓. 𝟗𝟓𝟕𝟕) 

b) (𝟒. 𝟎𝟔𝟒𝟖;  𝟑𝟏𝟗. 𝟕𝟎𝟒𝟖)  c) (𝟒. 𝟏𝟐𝟓𝟑;   𝟑𝟐𝟔. 𝟐𝟐𝟐𝟕)  d) (𝟑. 𝟗𝟗𝟓𝟕;  𝟑𝟑𝟐. 𝟔𝟏𝟕𝟓)  e) (𝟒. 𝟎𝟐𝟒𝟓;  𝟑𝟒𝟕. 𝟗𝟖𝟐𝟒)  f) 
(𝟒. 𝟏𝟖𝟓𝟕;  𝟑𝟕𝟔. 𝟐𝟖𝟎𝟏)  g) (𝟒. 𝟎𝟎𝟏𝟖;  𝟒𝟎𝟏. 𝟒𝟏𝟒𝟓)  h) (𝟑. 𝟗𝟖𝟕𝟏;  𝟑𝟒𝟏. 𝟓𝟖𝟕𝟖)  i) (𝟒. 𝟏𝟏𝟖𝟕;  𝟒𝟓𝟗. 𝟑𝟏𝟕𝟗) 

  



                                                        

115 

 
Table 4.13 relates the square electric field of the EMW to the position of the 

focal plane of the metalens: 

 

Geometry error, in 
(nm) 

Focal plane position (y, 
in µm) 

Square electric field (E2, in 
MV2/m2) 

+8 4.1191 315.9577 
+6 4.0648 319.7048 
+4 4.1253 326.2227 
+2 3.9957 332.6175 
 0 4.0245 347.9824 
-2 4.1857 376.2801 
-4 4.0018 401.4145 
-6 3.9871 348.5878 
-8 4.1187 459.3179 

Table 4.13 – Focal plane position and square electric field of the wave related to each geometry error of 

the metalens, considering 𝜆଴ = 1.65 µ𝑚. 

For 𝜆଴ = 1.65 µ𝑚, the effects of the geometry errors which are propagated 

along the structure of the metalens and the square electric field of the incident wave on 

the focal plane are shown in Figure 63 and Table 4.13. Figure 63 makes possible to 

visualize the shifts of the focal plane, while Table 4.13 relates both the focal plane 𝑦 

position and the square electric field of the wave (on the focal plane) to the applied 

geometry error over the structure. 

Related to the ideal supercell structure (zero error), the error of -2 nm introduces 

the highest deviation of focal plane position, which shifts up from 4.0245 to 4.1857 

µm, while the lowest focal plane position, 3.9871 µm, is set by the error of -6 nm. 

The square electric field, 𝐸ଶ, of the wave has the highest increase, from 

347.9824 to 459.3179 MV2/m2 when the error varies from 0 to -8 nm. Its highest 

decrease occurs when the geometry error is +8 nm, which lowers the square electric 

field from 347.9824 to 315.9577 MV2/m2. 
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4.4.14 Effect of geometry errors on the square electric field for 𝜆଴ = 1.70 µ𝑚 

 
a) Error of +8 nm 

 
b) Error of +6 nm 

 
c) Error of +4 nm 

 
d) Error of +2 nm 

 
e) Zero error 

 
f) Error of -2 nm 

 
g) Error of -4 nm 

 
h) Error of -6 nm 

 
i) Error of -8 nm 

Figure 64 - Influence of varied errors on the metalens for 𝝀𝟎 = 𝟏. 𝟕𝟎 µ𝒎. The focal plane position, 𝒚 in µm, and the 
square electric field of the wave on it, in MV2/m2, are given in pairs ൫𝒚, 𝑬𝟐൯ as it follows: a) (𝟑. 𝟔𝟓𝟖𝟐;   𝟑𝟏𝟔. 𝟑𝟕𝟕𝟑) 

b) (𝟑. 𝟕𝟑𝟏𝟗;  𝟑𝟐𝟕. 𝟕𝟎𝟗𝟑)  c) (𝟑. 𝟕𝟗𝟕𝟐;   𝟑𝟑𝟗. 𝟖𝟎𝟕𝟐)  d) (𝟑. 𝟔𝟕𝟐𝟖;  𝟑𝟒𝟕. 𝟎𝟔𝟑𝟏)  e) (𝟑. 𝟑𝟕𝟕𝟖;  𝟑𝟑𝟕. 𝟕𝟔𝟒)  f) 
(𝟑. 𝟓𝟐𝟒𝟏;  𝟑𝟓𝟏. 𝟓𝟒𝟏𝟏)  g) (𝟑. 𝟓𝟒𝟓𝟎;  𝟑𝟓𝟗. 𝟔𝟓𝟖𝟎)  h) (𝟑. 𝟓𝟓𝟔𝟕;  𝟑𝟓𝟓. 𝟓𝟑𝟒𝟖)  i) (𝟑. 𝟓𝟓𝟔𝟕;  𝟑𝟓𝟒. 𝟗𝟓𝟗𝟕) 
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Table 4.14 relates the square electric field of the EMW to the position of the 

focal plane of the metalens: 

 

Geometry error, in 
(nm) 

Focal plane position (y, 
in µm) 

Square electric field (E2, in 
MV2/m2) 

+8 3.6582 316.3773 
+6 3.7319 327.7093 
+4 3.7972 339.8072 
+2 3.6728 347.0631 
 0 3.3778 337.764 
-2 3.5241 351.5411 
-4 3.5450 359.6580 
-6 3.5567 355.5348 
-8 3.5567 354.9597 

Table 4.14 – Focal plane position and square electric field of the wave related to each geometry error of 

the metalens, considering 𝜆଴ = 1.70 µ𝑚. 

For 𝜆଴ = 1.7 µ𝑚, the effects of the geometry errors which are propagated along 

the structure of the metalens and the square electric field of the incident wave on the 

focal plane are shown in Figure 64 and Table 4.14. Figure 64 makes possible to 

visualize the shifts of the focal plane, while Table 4.14 relates both the focal plane 𝑦 

position and the square electric field of the wave (on the focal plane) to the applied 

geometry error over the structure. 

Related to the ideal supercell structure (zero error), the error of +4 nm 

introduces the highest deviation of focal plane position, which shifts up from 3.3778 to 

3.7972 µm, while the lowest focal plane position, 3.3778 µm, is set by the ideal (zero 

error) supercell geometry. 

The square electric field, 𝐸ଶ, of the wave has the highest increase, from 337.764 

to 359.6580 MV2/m2 when the error varies from 0 to -4 nm. Its highest decrease occurs 

when the geometry error is +8 nm, which lowers the square electric field from 337.764 

to 316.3773 MV2/m2. 
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CONCLUSIONS AND FUTURE WORKS 

CONCLUSIONS 

A literature review about metamaterials and metasurfaces was presented in 

chapter 2, enlisting the first and the modern applications for these devices. A brief 

citation of the development of all-dielectric metasurfaces through references from 2007 

was pointed. The generalized equations for refraction and reflection, which include the 

phase profile (or the phase gradient), were discussed. All-dielectric metasurfaces 

constitute a tendency for substituting plasmonic metasurfaces whenever possible and 

high efficiency represents a critical demand for certain application. 

This work presented three all-dielectric models of metasurfaces based on 

anomalous refraction and reflection through their generalized equations. The utilized 

numeric method for the simulations was finite elements to compose the proper mesh 

within the geometry, considering the devices and their surrounding air boxes. The 

utilized software was Comsol Multiphysics 5.2. The models presented good attendance 

to the criteria of global phase control in the range from – 𝜋 to 𝜋 plus the high absolute 

value for their respective coefficients. 

The developed models, planned for optical infrared wavelength of 1550 nm, 

utilized ABA type of unit cells, with inner square blocks of varied widths, from 20 to 

230 nm, to approximate their practical phase profile to the ideally expected.  

The anomalous refractor obtained over 0.9 for the absolute value of the 

transmission coefficient for the reached transmission angle of 24.17° when 𝜆଴ =

1.55 µ𝑚. The two highest deviations to this angle (related to the operation wavelength) 

in increment and decrement, respectively, occurred at 𝜆଴ = 1.7 µ𝑚, which generated a 

difference of +2.43°, and at 𝜆଴ = 1.4 µ𝑚, that yielded an angle of 21.71°, which implies 

the difference of -2.46°. See section 4.2 for considerations involving the inclusion of 

geometry errors. 

The anomalous reflector presented over 0.94 of absolute value for the reflection 

coefficient, performing as a perfect mirror for the designed angle of 17.17°. In practice, 
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it reached an angle of 17.62° without taking in consideration the geometry errors. 

Furthermore, the highest deviations around the referred practical reflection angle 

occurred at 𝜆଴ = 1.6 µ𝑚 and 𝜆଴ = 1.4 µ𝑚, with the respective increment and 

decrement of 0.62° and -1.61°. See section 4.3 for considerations involving the 

inclusion of geometry errors. 

The metalens presented satisfactory performance in focusing the electric field, 

with focal plane expected to be of 3.5𝜆଴. This means a focal plane in 𝑦 = 5425 𝑛𝑚, 

while the simulated practical value occurred in 𝑦 = 4550 𝑛𝑚, which means a deviation 

of approximately 16.1% for the operation wavelength, of 𝜆଴ = 1.55 µ𝑚. The highest 

increment and decrement, respectively, on the position 𝑦 of the focal plane, related to 

the practical case (𝑦 = 4550 𝑛𝑚) occurred at 𝜆଴ = 1.4 µ𝑚, of 0.682 µ𝑚, and 𝜆଴ =

1.7 µ𝑚, of 0.8365 µ𝑚. See section 4.4 for considerations involving the inclusion of 

geometry errors. 

 

PURPOSES FOR FUTURE WORKS 

 Developing models that employ different dielectric materials with 

contrasting refractive indexes; 

 Simulate the metasurfaces for different geometries, such as circles or 

ellipses instead of the inner squares; 

 Simulations that include not only normal incidence, but a range of 

incident angles; 

 Simulate an all-dielectric power divider metasurface;  

 Optimization of the devices with the use of bio-inspired optimization 

algorithms;  
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APPENDIX 

 

APPENDIX A – PUBLICATIONS OF ACADEMIC PAPERS 

 

A.1  ACADEMIC PAPERS RELATED TO THE PROJECT 

The research done in this dissertation work made possible the publication in 

international congresses. 

 

A.1.1  PUBLICATION IN INTERNATIONAL CONGRESS 

 SPIE 2017 (San Diego, USA) 
Title of the periodic: Anomalous refraction of infrared waves through ultrathin 
all dielectric metasurfaces. 

Authors:  Rafael Andrade Vieira*, Tulio Freitas Simões de Castro*, Vitaly Felix 
Rodriguez-Esquerre*. 

* Universidade Federal da Bahia (UFBA). 

 ENCOM 2017 (São Luís/MA, Brasil) 
Title of the periodic: Refração Anômala em Metasuperfícies Totalmente 
Dielétricas. 

Authors:  Rafael Andrade Vieira*, Tulio Freitas Simões de Castro*, Vitaly Felix 
Rodriguez-Esquerre*. 

* Universidade Federal da Bahia (UFBA). 
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Title of the periodic: Ultrathin all-dielectric Metasurface for Infrared Waves 
Focusing. 

Authors:  Tulio Freitas Simões de Castro*, Rafael Andrade Vieira*, Vitaly Felix 
Rodriguez-Esquerre*. 

* Universidade Federal da Bahia (UFBA). 
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APPENDIX 

 

APPENDIX B – FERMAT’S PRINCIPLE AND THE 
CLASSIC LAWS OF REFRACTION AND REFLECTION 

 

B1 CONSEQUENCE OF FERMAT’S PRINCIPLE WHEN THE LIGHT IS MOVING 
THROUGH THE SAME MEDIA [47] 

Given two points in the XY plane, A and B, the possibilities of ways between 

both are infinite, at first, as the Figure B1 suggests: 

 

Figure B1 – Example of many of infinite paths that the light can travel between two points A and B. 

Fermat’s principle states that the light travels from point A to point B in such 

way that it takes the smallest possible time to do so. As it remains moving through the 

same media, the path between two points corresponds to a straight line that crosses 

both points. When light crosses different media, however, it goes through a straight line 

while in the first media until it reaches the interface between the two media, where it is 

bended in two ways: partially reflected back to the first media and part of it is 

transmitted to the second media through another straight light, where the path is such 

that the travel time is as smallest as possible, which will be discussed as it follows. 
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Let the velocity, in the XY plane, be given by 𝑣 =
ௗ௦

ௗ௧
, where 𝑑𝑠 is the 

incremental change of the displacement with respect to the time 𝑡. That considered, the 

derivative of time can be written as: 

 𝑑𝑡 =
𝑑𝑠

𝑣
 (𝐵1) 

Where: 

 𝑑𝑠 = ඥ𝑥ଶ + 𝑦ଶ (𝐵2) 

If the displacement is relative to the wavelength, 𝜆, then: 

 𝑑𝑠

𝑑𝜆
= ඨ൬

𝑑𝑥

𝑑𝜆
൰

ଶ

+ ൬
𝑑𝑦

𝑑𝜆
൰

ଶ

 𝑑𝜆 (𝐵3) 

Considering 𝑣 = 𝑐 𝑛⁄ , where 𝑐 is the speed of light in free space and 𝑛 =

𝑛(𝑥, 𝑦) is the refractive index of the media, which changes with each point of the path, 

it yields: 

 𝑑𝑡 =
𝑑𝑠

𝑣
=

𝑑𝑠

𝑐 𝑛⁄
 (𝐵4) 

 𝑑𝑡 =
𝑛

𝑐
𝑑𝑠 (𝐵5) 

Starting from this formulation of equation B5, it is possible to sum the 

displacements that the light suffers by integrating the referred equation, which yields: 

 න 𝑑𝑡 = න
𝑛

𝑐
𝑑𝑠 (𝐵6) 

Since 𝑐 is a constant term, it can stand behind the integral. Now, considering the 

points A and B which the light passes through implies to consider that the integration 

limits on the left side as 𝑡஺ and 𝑡஻, while limits on the right side of equation B6 will be 

𝜆஺ and 𝜆஻, for the displacement 𝑠 is function of the wavelength 𝜆, and then the referred 

equation becomes: 
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 න 𝑑𝑥

௧ಳ

௧ಲ

=
1

𝑐
න 𝑛

ఒಳ

ఒಲ

. 𝑑𝑠 (𝐵7) 

The 𝑛. 𝑑𝑠 term inside the integral on the right side of equation B7 is the called 

Optical Path Length (OPL) [48], which is stated, by Fermat’s principle, to be the 

minimum between two points. It is noticeable that, considering one same media to 

contain the points A and B, the value of 𝑛 is constant, and can be taken as constant, 𝑛௢ 

in this discussion, which makes equation 7 become as follows: 

 𝑡஻ − 𝑡஺ =
𝑛௢

𝑐
න 𝑑𝑠

ఒಳ

ఒಲ

 (𝐵8) 

For the particular case when the light traverses one single media, the refractive 

index is constant. This means that the minimum Optical Path Length is directly 

associated with the minimum displacement 𝑠, a straight line, according to equation B8, 

in its turn related to the minimum time. That satisfies the Fermat’s principle for this 

case. 

B2 FERMAT’S PRINCIPLE ON THE CLASSIC REFLECTION OF LIGHT 

Let A be a point [49] through which passes an incident electromagnetic 

radiation until it reaches the point P of a perfect mirror, initially unknown, and leaves it 

reflected in direction of the point B, according to Figure B2: 
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Figure B2 – Generic example of classic reflection of a light beam. 

From Figure B2, the points A and B have a horizontal distance 𝑑 from each 

other. The horizontal distance of from point A to point P is given by 𝑥, while that of P 

to point B is (𝑑 − 𝑥). The vertical distance from point A to the mirror is given by 𝑎, 

while from point B to the mirror is 𝑏. The incident light makes an angle of 𝜃௜ with the 

axis that is normal to the mirror, while the reflected light makes an angle of 𝜃௥ with 

respect to the same axis. The path taken by the light from the point A to the point B is 

given by ∆𝑧, which is the sum of the individual straight segments AP and PB.  

Reflected light keeps propagating within the same media from which it came 

from, implying that, when reflected, the light remains with the same constant speed of 

when it was coinciding directed to the mirror, that is: 

 𝑣 =
∆𝑧

∆𝑡
 (𝐵9) 

Where: 

 ∆𝑧 = 𝐴𝑃തതതത + 𝑃𝐵തതതത (𝐵10) 

A careful look at equation B10 and Figure B2 as a triangle allows one to 

observe that: 
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 ∆𝑧 = ඥ𝑥ଶ + 𝑎ଶ + ඥ(𝑑 − 𝑥)ଶ + 𝑏ଶ (𝐵11) 

Returning to Fermat’s principle, the point P will be located on a horizontal 

distance 𝑥 from point A, such that the time that the light takes to pass through point B 

is minimal. It is, then, formed a minimization problem of the interval ∆𝑡 taken by the 

light between the referred points A and B. If, in equation B9, the ∆𝑧 term is substituted 

by the one of equation B11 and the result is solved for ∆𝑡, then it yields: 

 ∆𝑧

∆𝑡
=

√𝑥ଶ + 𝑎ଶ + ඥ(𝑑 − 𝑥)ଶ + 𝑏ଶ

∆𝑡
 (𝐵12) 

 ∆𝑡 =
√𝑥ଶ + 𝑎ଶ + ඥ(𝑑 − 𝑥)ଶ + 𝑏ଶ

𝑣
 (𝐵13) 

Equation B13 has the distance 𝑥 as the only variable. The problem of 

minimizing ∆𝑡 is solved, then, by differentiating equation B13 with respect to 𝑥 and 

making it equal to zero, according to the following steps: 

 
𝑑(∆𝑡)

𝑑𝑥
=

1

𝑣
൜
1

2
(𝑥ଶ + 𝑎ଶ)ିଵ/ଶ. 2𝑥 +

1

2
[(𝑑 − 𝑥)ଶ + 𝑏ଶ]ି

ଵ
ଶ. 2. (𝑑 − 𝑥). (−1)ൠ (𝐵14) 

Equation B14 is, then, equalized to zero in order to minimize the travel time, 

which can be significantly simplified as it follows: 

 
𝑥

√𝑥ଶ + 𝑎ଶ
−

𝑑 − 𝑥

ඥ(𝑑 − 𝑥)ଶ + 𝑏ଶ
= 0 (𝐵15) 

By comparing Figure B2 with equation B15, one can notice that the first term 

corresponds to sin(𝜃௜), while the second term of the left side coincides with sin(𝜃௥). 

Substituting equation B15 by its corresponding sinusoidal terms, it yields: 

 sin(𝜃௜) − sin(𝜃௥) = 0 (𝐵16) 

 sin(𝜃௜) = sin(𝜃௥) (𝐵17) 

The necessary condition to both sinusoidal terms of equation B17 be equal is 

that the arguments on both sides is the same, then: 
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 𝜃௜ = 𝜃௥ (𝐵18) 

The conclusion of applying Fermat’s principle to the classic law of reflection is 

in equation B18, which shows that the angle of incidence must be equal to the angle of 

reflection of the light. 

 

B3 FERMAT’S PRINCIPLE APPLIED TO THE CLASSIC REFRACTION OF 
LIGHT  

The “principle of least time” can also be applied to derive the classic Snell’s 

Law [49]. This will be explained based on Figure B3, where light travels from one 

media to another, and considering 𝑛௧ > 𝑛௜. 

 

Figure B3 – Generic example of classic refraction of a light beam. 
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Consider a beam of light traversing from point A to point B, which horizontal 

distance is 𝑑. An horizontal line determines an interface between media 1 (which 

refractive index is 𝑛௜) and media 2 (which refractive index is 𝑛௥). 𝑥 is the horizontal 

distance between the point A and the  perpendicular line where the light crosses from 

one media to another. It can be observed, then, that the distance between the dashed 

and the point B is given by (𝑑 − 𝑥). Same as it was for section B2, 𝜃௜ is the angle that 

the beam makes with the imaginary axis that is normal to the mirror, while the 

transmitted light makes an angle of 𝜃௧ with respect to the same axis. Just as in section 

B2, the vertical distance from point A to the interface is given by 𝑎, while the vertical 

distance from point B to the interface is given by 𝑏. 

The time taken for the light to leave point A and hit the interface will be given 

by 𝑡஺, while the time taken from the interface to point B will be considered to be 𝑡஻. 

Classic Snell’s law can be obtained, as it follows, by calculating both different 

trajectories show in Figure B3, each time and then, according to Fermat’s principle, 

minimizing the obtained times 𝑡஺ and 𝑡஻. 

By observing Figure B3, one can comprehend, through basic geometry, that the 

respective propagation paths 𝐴𝑃തതതത and 𝑃𝐵തതതത, from the starting point A to point P of the 

interface and then from point P to the destination point  B,  are given by: 

The propagation time of light through paths 𝐴𝑃തതതത and 𝑃𝐵തതതത are given, respectively, 

by 𝑡஺௉തതതത = 𝐴𝑃തതതത 𝑣௜⁄  and 𝑡௉஻തതതത 𝑃𝐵തതതത 𝑣௧⁄ , which yields: 

 𝐴𝑃തതതത = ඥ𝑥ଶ + 𝑎ଶ (𝐵19) 

 𝑃𝐵തതതത = ඥ(𝑑 − 𝑥)ଶ + 𝑏ଶ (𝐵20) 

 𝑡஺௉തതതത =
√𝑥ଶ + 𝑎ଶ 

𝑣௜
 (𝐵21) 

 𝑡௉஻തതതത =
ඥ(𝑑 − 𝑥)ଶ + 𝑏ଶ 

𝑣௧
 (𝐵22) 

The total time is given by adding both equation 21 and equation 22: 
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 𝑡்௢௧௔௟ =
√𝑥ଶ + 𝑎ଶ 

𝑣௜
+

ඥ(𝑑 − 𝑥)ଶ + 𝑏ଶ 

𝑣௧
 (𝐵23) 

Since Fermat’s principle is about the minimum propagation time, it is fit for this 

application application to assume that: 

 
𝑑𝑡

𝑑𝑥
=

2𝑥

2𝑣௜√𝑥ଶ + 𝑎ଶ
−

2𝑥

2𝑣௧ඥ(𝑑 − 𝑥)ଶ + 𝑏ଶ
 (𝐵24) 

The minimization process requires that equation B24 is equal to zero and by 

observing the triangles of Figure B3, it yields: 

 
1

𝑣௜

𝑥

√𝑥ଶ + 𝑎ଶ
−

1

𝑣௜

𝑥

ඥ(𝑑 − 𝑥)ଶ + 𝑏ଶ
= 0 (𝐵25) 

 
1

𝑣௜

𝑥

√𝑥ଶ + 𝑎ଶ
=

1

𝑣௜

𝑥

ඥ(𝑑 − 𝑥)ଶ + 𝑏ଶ
 (𝐵26) 

One can compare equation 25 with Figure B3 and carefully observe the 

sinusoidal relations: 

 sin 𝜃௜ =
𝑥

√𝑥ଶ + 𝑎ଶ
 (𝐵27) 

 sin 𝜃௧ =
𝑥

ඥ(𝑑 − 𝑥)ଶ + 𝑏ଶ
 (𝐵28) 

 

Substituting in equation B26 the results obtained from equation B27 and 

equation B28, then it becomes: 

 
sin 𝜃௜

𝑣௜
=

sin 𝜃௧

𝑣௧
 (𝐵29) 

Since the refractive index is defined as 𝑛 = 𝑐 𝑣⁄ , the velocities which light will 

propagate over the two homogeneous media can be given in terms of the refractive 

index as it follows: 
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sin 𝜃௜

𝑐
𝑛௜

=
sin 𝜃௧

𝑐
𝑛௧

 (𝐵30) 

Finally, by manipulating equation B30, Snell’s classic law is, then, 

appropriately obtained: 

 𝑛௜ sin 𝜃௜ = 𝑛௧ sin 𝜃௧  (𝐵31) 

 


