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Resumo

O principal objetivo deste trabalho é o desenvolvimento, analise e simulacao de
novos algoritmos de controle preditivo robusto para sistemas nao-lineares na presenca de
perturbagoes aditivas limitadas. Os controladores propostos satisfazem as propriedades
de factibiildade recursiva e estabilidade entrada-estado e foram desenvolvidos tomando
como base algoritmos existentes para os casos nominal ou linear. Satisfagao robusta das
restricoes é garantida através de predigoes nominais e restricoes contraidas, com a extensao
de valor médio de zonotopos sendo utilizada de modo a reduzir o conservadorismo na
propagacao de incertezas.

Os problemas de regulacao sem offset na presenca de perturbagoes constantes e
seguimento de referéncias constantes por partes foram estudados, considerando também
perturbagoes estocasticas e restricoes de estado probabilisticas. Finalmente, as estratégias
propostas foram aplicadas em simulacao aos sistemas de referéncia Buck-Boost e CSTR
(Continually Stirred Tank Reactor), de modo a validar os controladores e ilustrar suas

propriedades.

Palavras-Chave: Controle Preditivo, Controle nao-linear, Controle Robusto, Re-

stricoes Contraidas, Conguntos Invariantes, Zonotopos.



Abstract

The main objective of this dissertation is the development, analysis and simulation
of new robust model predictive control algorithms for nonlinear systems in the presence
of bounded additive disturbances. The proposed controllers satisfy recursive feasibility
and input-to-state stability criteria. They are initially derived from existing algorithms
for nominal or linear models. Robust constraint satisfaction is reached through nominal
predictions coupled with tightened constraints, with the mean-value zonotopic extension
being used in order to reduce conservatism in the disturbance propagation.

The problems of regulation without offset in the presence of constant disturbances
and tracking of piece-wise constant references were tackled, also considering stochastic
disturbance and chance state constraints. The proposed techniques are applied to the
Buck-Boost and CSTR (Continually Stirred Tank Reactor) simulation case studies in

order to validate and illustrate the proposed approaches.

Keywords: Model Predictive Control, Nonlinear Control, Robust Control, Con-

straint Tightening, Invariant Sets, Zonotopes.



Notation

Given the sets A, B C R™, C C R™ and the matrix R € R™™ the Minkowski sum
is defined as A® B = {xr € R™": x = a+10b, a € A, b € B}, the Pontryagin difference
as AoB={xeR": z+bec A, Vbe B}, the linear mapping as RA = {y € R": y =
Ra, a € A} and the cartesian product as A x C = {z € R™"": z = (a,c¢), a € A, c € C}.

The term x;, represents the value of a signal on instant k, while Az, = zp — 151
represents its first difference, and x4 is the value of x4 ; as predicted in k (note that
Ty = xy). Given two integers a and b, with @ < b, and a signal vy, then the set of integers
between a and b is described by Z,,) = {j € Z: a < j < b}, and the sequence defined by
v, with k& between a and b is represented by V{4 = {va, Vas1,. .-, U}

Given the matrices A, B € R™™, A < (>)B represents the mn inequations a;; <
(>)bi;, while A < (>)B means that A — B is a negative (positive) semidefinite matrix. A
(unspecified) norm of a vector v € R™ is represented by [|v[|, while [[v]|, = VS Juilp s
its p-norm and ||v|| , = maxiez, , [vi| its infinity-norm. For a given matrix A € R™™ [|A]
([[All,, [[A]l) is the induced (p-, infinity-)norm of the linear transformation A: R™ — R™.
The absolute value |A| of a matrix must be taken term-by-term. The notation [[w ||
represents the norm of a sequence wyp j = {wo, ..., w;}, i.e. [[Wpyll = maxjez, , [[w;]|-

A function a: Ry — Ry is a K-function if it is continuous, strictly increasing and
a(0) =0, and it is a K-function if lim,_,o a(s) = oo as well. A function : Ry xR, —
R, is a KL-function if, for each fixed ¢t > 0, §(+,t) is a K-function and, for each s > 0,
B(s,-) is decreasing, with lim; ,., 3(s,t) = 0. A function f: A C R™ — R" is said to
be Lipschitz continuous if there exists a constant L € R such that || f(xp) — f(x.)|| <
L||zy — 2o, Yoe, 7y € A and of class C! if it is differentiable and has continuous first-
order derivatives. In this case, its jacobian matrix is represented by VTf: A — R™ ™.

The unitary m-dimensional box is described by BZ = {£ € R™: ||£||, < 1},
and the set of real compact intervals is given by T = {[a,b], a,b € R, a < b}. Given
aset A C R™ I(A) € I"™ represents its interval hull. Interval matrices are represented
by J € I"*™ with mid(J) and rad(J) representing, respectively, its medium point and

radius.
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Chapter 1

Introduction

1.1 Motivation

Model Predictive Control (MPC) [16] presents an alternative approach to clas-
sical control strategies, allowing for a formal incorporation of constraints via the MPC
optimization problem, which integrates performance and constraint satisfaction. The re-
ceding horizon paradigm states that the optimization problem must be solved at each
time instant, so as to obtain the next control action.

Earlier MPC strategies, however, did not ensure recursive feasibility or stability.
Therefore, relatively large prediction horizons, associated with high online computational
costs (specially for nonlinear systems), should be employed so as to avoid constraint vio-
lation or even instability. Strategies like the introduction of terminal positively invariant
sets and terminal costs [25] were then considered in order to ensure recursive feasibility of
the optimization problem and asymptotical stability of the closed-loop system, even for
shorter horizons.

However, even with formal guarantees of stability and constraint satisfaction for
the nominal system, applied in the prediction, the presence of modelling errors and dis-
turbances can still deteriorate the controller performance, or even result in instability.
In order to allow for such guarantees to hold under the presence of uncertainties, ro-
bust model predictive control has been developed. Robust MPC considers the presence
of unknown but bounded uncertainties and ensures robust constraint satisfaction and
Input-to-State (ISS) stability [12]| for any admissible sequence of disturbances [27, 23].

Robust Nonlinear Model Predictive Control thus consists of an active area of re-
search, with recent works [34, 13| applying nominal predictions, tightened constraints and
terminal robust positively invariant sets in order to ensure robust stability. Nonetheless,
related problems, such as: (i) the search for less conservative tightened constraints and

terminal sets, (ii) offset correction in the presence of constant disturbances, and (iii) the



extension of these results for the tracking case, are still in development and are the focus

of this work.

1.2 Model Predictive Control

Model Predictive Control is a control strategy that uses a model to predict the
future behavior of the system and find, via optimization, the ‘best’ sequence of future
inputs for the prescribed finite horizon problem, i.e. the one that minimizes a given cost
function, subject to certain state and input constraints. The control horizon represents
how many future inputs are considered as variables of the MPC optimization problem
and the prediction horizon defines how many future states are considered in the predic-
tion. Following the receding horizon paradigm, only the first input in the optimal control
sequence calculated is applied, and the optimization problem is solved again in the next
time instant, thus closing the loop.

The first proposed MPC strategies (DMC (Dynamic Matrix Control), GPC (Gen-
eralized Predictive Control), and State-Space MPC) applied models based on the step
response, transfer function and state-space to predict and control the behavior of linear
systems [16]. Quadratic cost functions and linear constraints were also considered, re-
sulting in quadratic programming problems. These control strategies allow the natural
incorporation of constraints, with the State-Space MPC also being easily extended to the
nonlinear case, albeit with a more complex, in general non-convex, associated optimization
problem, and thus, higher computational costs.

However, with the prediction horizon N being finite, information about the behav-
ior of the system after the time instant k + V is not considered at k. Therefore, recursive
feasibility and stability are not in general guaranteed. A strategy to avoid feasibility
loss and instability is the application of a ‘sufficiently large’ prediction horizon, involving
virtually all the prediction dynamic. This, however, is associated to a high, sometimes
unviable, computational cost, specially for nonlinear dynamics.

In this context, methods for guaranteeing stability of MPC strategies were pro-
posed. In particular, a terminal positively invariant set and a terminal cost function can
be incorporated in order to ensure recursive feasibility and stability of the closed-loop
system [27, 16]. These guarantees, however, consider that the process evolution will be
identical to the nominal, predicted, one, and thus are invalid in the presence of prediction
errors or additive disturbances.

A strategy to deal with the presence of uncertainties is considering nominal pre-
dictions and tightened constraints in the MPC optimization problem, such that the real

system trajectory, in the presence of uncertainties, satisfies the original constraints |19,



34]. Terminal robust positively invariant sets and terminal costs are also employed. This
way, it is possible to ensure recursive feasibility and Input-to-State stability even in the
presence of additive, limited, uncertainties.

For computation of the tighter constraints, disturbance propagation sets, which
limit the difference between predictions made at k and k + 1, are necessary. For linear
systems, these sets can be directly obtained from the model matrices. For nonlinear
dynamics, however, the existing methods of disturbance propagation, such as the one
based on Lipschitz constants, tend to be rather conservative. In this context, zonotopes
appear as an interesting alternative. They are a class of convex, symmetric polytopes
that, due to their flexibility and simplicity, allied with the low computational cost of their
linear transformations and Minkowski sums, are extensively used in state estimation and
fault detection [10, 1, 35].

Finally, the control strategies mentioned above consider the problem of regulation
to a given admissible equilibrium, with the prediction model being translated such that
this target is represented by the origin. If tracking of piece-wise constant references is
required, these controllers could in theory be used, with the equilibrium point being up-
dated at each reference change. The feasibility of the optimization problem can, however,
be lost during reference changes, unviabilizing such strategies.

In order to avoid feasibility loss due to reference changes and to increase the domain
of attraction, a virtual reference can be included as an additional variable in the MPC
optimization problem |21, 22|. The freedom provided by the artificial reference permits
recursive feasibility and stability guarantees for the tracking problem, with the artificial

reference tending to the real one via the incorporation of an offset cost.

1.3 Main Contributions
The main contributions of this project are detailed as follows:

(i) Proposal of a disturbance propagation method based on zonotopes, which is shown
to be less conservative than the typical solution, and thus results in less tightened

constraints than existing strategies.

(ii) Incorporation of mean-value disturbance estimations into the model prediction and
target correction in order to avoid steady-state offset in the presence of constant

disturbances.

(iii) Extension of the nominal tracking NMPC proposed in [22]| to the robust case, en-

suring recursive feasibility and ISS-stability of the ensuing controller.



(iv) Incorporation of chance state constraints [34] into the proposed controllers, main-

taining feasibility and stability guarantees.

Other contributions include the development of an algorithm for computing the
closed-loop prediction matrix in order to mitigate the disturbance propagation, a terminal
constraint contraction approach which generalizes the method of calculating Robust Posi-
tively Invariant (RPI) sets for nonlinear systems based on linear approximations proposed

in [14] and an analysis of the properties of the zonotopic mean-value extension [1].

1.4 Related Papers

In this section, related papers, which were made during this masters and on which

most of this dissertation is based, are briefly presented.

1. The paper Controle Preditivo nao-linear Robusto com Propagacao de Incertezas via
Zonotopos [6] was presented in the Congresso Brasileiro de Automatica (CBA) 2020,
where the zonotopic disturbance propagation method was proposed, applied in the
design of a regulating NMPC for the Buck-Boost DC-DC converter and shown to

be less conservative than the infinity-norm Lipschitz method.

2. The paper Robust Nonlinear Model Predictive Control with Bounded Disturbances
based on Zonotopic Constraint Tightening 8|, published in the Journal of Control,
Automation and Electric Systems (JCAE), is an extended version of the previous
paper, presenting the constant disturbance attenuation method and a new case

study, based on the Continually Stirred Tank Reactor (CSTR).

3. The paper Robust Nonlinear Model Predictive Control based on nominal predictions
with piecewise constant references and bounded disturbances [7], published in the
International Journal of Robust and Nonlinear Control (IJRNC), proposes the ro-
bust tracking NMPC strategy, with the introduction of an artificial reference in
order to avoid feasibility loss due to reference changes [22]. In this paper, stochastic

disturbances and chance constraints were also considered.

Furthermore, the papers Robust MPC' for linear systems with bounded disturbances
based on admissible equilibria sets [33] and Robust Nonlinear Predictive Control through
qLPV embedding and Zonotope Uncertainty Propagation [29], although not directly pre-
sented in this dissertation, are also related to this project. In [33], the robust MPC of
linear systems is considered, applying terminal equality constraints and maintaining recur-

sive feasibility through the introduction of appropriate slacks, while in [29] the zonotopic



disturbance propagation method proposed is applied to quasi-Linear Parameter Varying
(qLPV) systems.

1.5 Structure of the Text

This dissertation is structured as follows: Chapter 2 presents the robust NMPC
through constraint tightening on which this work is based, as well as other fundamentals,
such as the disturbance propagation process, robust positively invariant sets and zono-
topes. In Chapter 3, a constant disturbance model is included into the NMPC prediction,
and target correction is applied in order to avoid offset in the presence of constant dis-
turbances. Chapter 4 presents the zonotopic disturbance propagation approach and its
associated conservatism reduction, while Chapter 5 considers the robust tracking of piece-
wise constant references, with recursive feasibility and stability guarantees through the
inclusion of an artificial reference. Chapter 6 considers the presence of stochastic distur-
bances and chance constraints. Finally, simulation case-studies are presented in Chapter

7, and concluding remarks are presented in Chapter 8.



Chapter 2

Robust NMPC based on Nominal

Predictions

In this chapter, the basic aspects and properties of the robust nonlinear model
predictive control based on nominal predictions are presented. First, the general state-
space model of discrete-time nonlinear systems with additive uncertainties and state and
input constraints is presented. Then, the closed-loop paradigm, with the introduction
of a virtual control in order to mitigate the disturbance propagation through the sys-
tem dynamics, is considered. Disturbance propagation sets, which are necessary for the
constraint tightening and consequent robust constraint satisfaction, are then discussed
and the robust NMPC algorithm is presented. Common assumptions which simplify the
NMPC design and a method for computing terminal robust positively invariant sets are
then introduced. Finally, a brief discussion of zonotopes and associated operations is

made.

2.1 System Description

Consider the following discrete-time nonlinear system

Tpr1 = f(Tg, ugp) + Wi,

where x;, € R" is the state vector, uy € R™ the control input, y, € RP the controlled
output, and w; € R" the additive disturbance. The functions f: R"*™ — R" and
h: R™™™ — RP describe, respectively, the model dynamics and output equations and
are considered of class C! in the set of admissible states and inputs. It is assumed, with-

out loss of generality, that the origin is an equilibrium point of the system (2.1), such that



f(0,0) =0 and h(0,0) = 0.1

Although the additive disturbance is unknown, it is considered to be contained in
a compact set, i.e. a bounded and closed set |3, Chapter 5|, W C R™ with the origin in its
interior, such that wy € W, Vk € N. System (2.1) is also subject to compact constraints

on states and inputs, i.e. there exists a compact set Z C R"™™ in such a way that
($k,uk) € Z, VkeN. (2.2)

Remark 2.1. For simplicity, wy, € W is considered in this work to be an additive dis-
turbance, as in [26] and [5]. However, other sources of uncertainty can be represented by
(2.1) and thus handled analogously. Considering modeling errors, for instance, an additive
uncertainty gwen by Wy = f(xg, uy) — f(xg, u) can be defined, where f and f represent

the real system dynamics and prediction model, respectively.

2.2 Closed-loop Prediction Paradigm

Considering the presence of disturbances, a closed-loop prediction is implemented
with the goal of reducing the disturbance propagation through the system dynamics [32,
Chapter 7]. The control input is thus given by

up = m(xg,vx), VkEN, (2.3)

where x;, is the current available state, and v, € R™ is the virtual input, which satisfies the
role of constraint satisfaction and optimization. The feedback function 7: R™*™ — R™,
that can be chosen so as to mitigate the disturbance propagation, is considered to be of
class C! and, for each pair (z,u) € R™™, there exists only one v € R™ such that u =
7(x,v). Considering this closed-loop paradigm, the nonlinear model can be alternatively

described as

Tp1 = f(ap, T(Tk, V) + Wi

= [x(xr, vr) + W, (2.4a)
Y = h(iL‘k, W(l’k, Uk))
= hﬂ(fk,vk). (24b)

Moreover, the constraints can be rewritten in terms of the virtual input by the following

alternative representation:

(x, %) € Zr = {(x,v) e R"™: (z,7(x,v)) € Z}, VkeN. (2.5)

If a different equilibrium point is sought, a modified nonlinear model can be defined from translated

variables, such that this equilibrium is represented by the origin of the new state-space description.



This description is used to define the NMPC ingredients with respect to the virtual inputs
Vktjiks J = 0...N — 1. The sequence of future virtual inputs, namely Y ryn—1) =

(Uk|k Vkt1jk - UkeN—1]k) is then the decision vector for optimization purposes.

2.3 Disturbance Propagation

Consider that the trajectory of system (2.4a), starting from the initial state z; €
R™, is given by
Tt = Ox(Js Ths Vi ki1 Wikpri-1)),  J = 0. (2.6)
It should be remarked that the general analytical expression of the function ¢.(-) is not
available, but it can be defined recursively through iterations on 411 = fr(Trs, Vitj) +
W45 from x,. Nominal predictions are obtained by considering the null disturbance case,
that is
Thpjik = Ox (), Tks Vit kti-1),0), 7 = 0. (2.7)
In order to guarantee recursive feasibility of the NMPC in the presence of disturbances
wr € W, sets §(j), j = 0...N, satisfying Condition 2.1 are iteratively defined so as to
limit the disturbance propagation [34, 19].

Condition 2.1. The disturbance propagation sets S(j), j = 0...N, must satisfy the

following conditions:

(1) S(0) is a compact set that contains W.

(i) S(j), j = 1...N, is a compact set such that, for all x,, x, and v, with (z,,v) €
Z,6(8(j—1)x{0}) and zp, — x, € S(j — 1), we have fr(xp,v) — fr(za,v) € S(7).
Considering x, = 241 and 2, = Ty = fr(Tk, Vi), we have 2, —z, € W C §(0).
Therefore, from induction on Condition 2.1, x4 k41 € Tepjpe ®S(J—1), 7 =1...N+1,
for all admissible control sequences 0[k7k+N]2. The sets S(j) are thus able to limit the
difference between predictions made at the instants k and k + 1.3
In the linear case, the smallest sets S*(j) that satisfy Condition 2.1 can be directly
computed as §*(j) = (A+ BK,)’W, where f(z,u) = Az + Bu and 7(z,v) = v+ K,z [9].
For nonlinear systems, on the other hand, there are no known algorithms for obtaining the
optimal §*(j) [13]. More conservative outer bounds, taking into account the worst-case

disturbance propagation, must then be used.

2An admissible future control sequence represents a sequence Vik,k+n] such that (2p 4k, Verjje) €
Z:0(8(j—1)x{0}), Vj=1...N.

3The sets S(j), 5 = 1...N, presented here and in [34], are related to the disturbance reachable
sets R(j) of [9] in that the R(j) are given by the accumulation of the disturbance effects S(j) over the
prediction horizon, i.e. R(j) = S(0) & --- & S(j).



2.4 Robust NMPC based on Nominal Predictions

Robust Model Predictive Controllers based on nominal predictions apply (2.7) in
the formulation of the optimization problem and computation of the optimal sequence
of future inputs. However, given the presence of disturbances, tightened constraints are
considered in order to avoid constraint violation by the real system trajectories. Terminal
cost and constraints are also adapted to the robust case, in order to guarantee recursive
feasibility and input-to-state stability [27].

Given the prediction horizon N € N and the initial set of constraints Z,(0) = Z,,
tightened constraint sets Z.(j), j = 1...N, can be iteratively defined based on the

disturbance propagation sets S(j) as follows
Z:(+1) = Z:(j) © (8(j) x {0}). (2.8)

Therefore, at each sampling instant £ € N, the state x; is obtained and the following

optimization problem Py (zy) is solved:

N-1

o[ki?fﬂ,u ; L (Tt jies Visjie) + Vi(@rrnin) (2.9a)
s.t:
Thtjrilk = Sr(Thtjlks Vkpjik)s J € Zjo,N-1] (2.9b)
(Thtjie, Virjie) € Z2(J), J € Zpn-1, (2.9¢)
Tein € X, (2.94)

where Vi x1n_1 are the future virtual inputs, variables of the optimization problem,
L (Tt jiks Vktjjk) is the stage cost, Vi(2pynje) is the terminal cost, and X is the terminal

set.

Remark 2.2. In practice, the predicted sequence of states X r+n) 5 also a variable of
the optimization problem. However, this trajectory is fived by xp = x5, and (2.9b) for a
given sequence of future inputs Vi xyn—1). Therefore, for the sake of presentation clarity
of the optimization problem, the viijx, j =0...N —1, can be considered as the only free
variables of Pn(xy), with the predicted trajectory being implicitly, or, in the linear case,

even explicitly, defined by the future inputs.

The set of initial states o € R™, such that Py(x¢) is feasible, is called the domain
of attraction of the controller and represented by Xy. For a x, € Xy, the solution of

Py(zy) and its associated cost are respectively ¥, ;\ _;)(zx) and Vi (xy). A

4The notations Vit N—1] (zx) and V3 (zy) are employed in this work in order to emphasize the

dependence of the optimal solution on the current state.
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The terminal set X'y must be an admissible Robust Positively Invariant (RPI) set?,
with an uniformly continuous terminal control law v,: Xy — R™, with w(z) == 7(z, v(x)),
u(0) = 0, such that:

Assumption 2.1 (Terminal Set).

(1) The terminal set is compact and contains the origin as an interior point, where Xy C
Vv ={z € R": (z,u(x)) € Ax} and Ay C Z(N) = {(z,7(z,v)) € R*"™: (z,v) €
Z.(N)} is the N-step-ahead admissible set.

(1t) The terminal set is Robust Positively Invariant, such that f(z,ui(z)) @ S(N) C X
for all v € Xy.

Finally, the following typical set of assumptions is imposed to ensure Input-to-State

stability:
Assumption 2.2 (Input-to-State Stability).

(i) Let L,(x,v) be a definite positive, uniformly continuous function such that, for any

feasible x and v:

La(z,v) Zap(|[x]]), (2.10a)
|Lr(@1,01) = La(@2, v2)| SAa([|w1 — 2]]) + Au([lor — v2)), (2.10b)

where A\, and X\, are K-functions and o, is a Kso-function.

(1t) Let the terminal cost function Vi(x) be a definite positive, uniformly continuous

function in Xy such that, for any x € Xy:

0 < Vi(z) < Bv (=), (2.11a)
Vi(21) = Vi(@a)] < 0(flz1 — 22l), (2.11b)
Vi(fa (@, vi(2))) = Vi(2) < —La(z,v,(2)), (2.11¢)

where By is a Kyo-function and 6 is a K-function.

The receding horizon policy then states that the Model Predictive Control law is
given by

up = k(zg) = m(xg, v}). (2.12)

It is worth noting that, in the context of optimal control theory, the cost term

Zj.v:_ol L (Tptjies Vi) + Vi(@rgpne) is referred as a cost functional. This is because

°A set Xy C R™ is said Robust Positively Invariant in relation to the system (2.4a), subject to
the control law vy = wv(xx) and disturbances wy € Wy, if for any z € Xy and w € Wy we have
fa(z,ve(2)) +w € Xy
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the future inputs and predicted trajectory, particularly in the continuous-time case, are
themselves functions of the time ¢, being L (x,v) and V(z) functions of functions (func-
tionals). In the literature of predictive control of discrete-time systems, however, the
nomenclature of cost functions is commonly used, since here the sequence V14 n—1) can
be seen as a simple vector, rather than a function of k.

Under these assumptions, Lemma 2.1 and Theorem 2.1 [19, 34| guarantee recursive
feasibility and Input-to-State Stability (ISS) of the system (2.1) subject to the control law
(2.12).

Lemma 2.1 (Recursive Feasibility [34]).
Given xy, € Xy, then xpi1 = f(xg, k(x)) +wy € XN for all wy € W. Furthermore, given
Vi (zk) = (Vs - - -+ Viy v_a) SOlution of P (xy), then V¢ = (Vi -+, Uy i Y (Thivip)

defines a feasible (candidate) solution of Pyn(xyy1).

Proof. Consider the optimal nominal trajectory xj i = ¢x(J, 2k, v*,0) and the candi-
date solution v¢ = (UZHW e U Nk vt(:z;,’;rmk)), which provides the standard one-step
ahead candidate predictions xf ., ., = ¢r(J, k11, V¢, 0). From Condition 2.1, we have

Therefore, the constraints (z} ;. Uy ) € Zx(J), 7 =0... N—Tand 2}y € X;
directly imply that ({1 i Vi) € @hire Vein) ©AS() X0} € 2:(5), j =
0...N — 1, due to the admissibility of Xy (X; C Vy) and the definition of the tighter
constraints (2.8), where vy, v, = ve(2}, ;) is defined for simplicity of notation.

For the terminal constraint, notice that the candidate solution is such that
Thrrenprr = Sr(@nipgrr 0@ pyi))- Therefore, since aj vy — @y, € S(N = 1),
T ik € Jr(@hp v (T ) ©S (V). Finally, since oy, v, € Xy, thenaf vy €
X} follows from the robust invariance of X; and V¢ is a feasible candidate solution of

Py (2p41)- L

Theorem 2.1 (Input-to-State Stability [34]).
The system (2.1) subject to the NMPC control law (2.12) is Input-to-State stable. That

is, for any initial state xo € Xy and disturbances wy, € W, we have:

el < Bllwoll s &) + ([ wiom]]), (2.13)
where (8 is a KL-function and v is a KC-function.

Proof. The candidate solution V¢ is used to show via standard optimality arguments that
Vi (zg) is an ISS-Lyapunov function. From the uniform continuity of the model, there

exists a K-function o,(-) such that Hxi+j+1\k+1 —:r,j+j+1|kH < ol(||lwel]), 7 = 0...N,
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where v vy = Ut(JUZJer) and @y, yy gy = fﬂ(szerk, UZ+N|k) are defined for simplicity of
notation. Thus, from Equations (2.10b) and (2.11b), we have

| L (@ j 1 Vigiprn) — L (@i Vi) | < Ao(od  ((Jwkll), G=1...N,
|vf<xZ+N+l|k+1) - Vf(xz+N+1|k)‘ < 5(‘75(”1‘%”))
Therefore, using the fact that the terminal cost is a Lyapunov function of the terminal

control law (2.11c), the candidate cost is bounded by
N-1

Vi (@g1) = Z Ln($2+1+j|k+1a U£+1+j\k+1) + Vf($i+1+N|k+1)
0

<.
Il

Lw(951:+j|k7 UZﬂ‘\k) + Vf($2+1+N|k) + 0([[wi])

VAN
10

=z
L

Lﬂ(x};rﬂk, UZ+j|k) + (Lw<xZ+N|k7 UZ+N|k) + vf<IZ+1+N|k)) + 0(][wr])

1M

N-1

< D L@ Vi) + Vi (@) + 0(llwwl)
j=1

= Vi (zn) = L@, vp) + 0([wil)),

< Vi (zx) = ar(llzsll) + 0(llwsl)

where 0(||wg]|) = Z;V;Ol Ao (2 (Jw ) + 8(a¥ (|lwi]])) is a K-function. The property of

decreasing cost is thus ensured, since by optimality V3 (zr+1) < Vg (2k41)-
Vi (@e1) = Vi(er) < —ar(|lzell) + 0((Jwl). (2.14)

Now, notice that V3 (xr) > Ly(zx,v5) > an(||lzk|]) and, for x; € Xy, the unconstrained
terminal control law is feasible throughout the entire prediction horizon and by optimality
Vi(zy) < Vi(xy) < Bv(||zkl]), Vor € Xp. Furthermore, from the continuity of the costs
and compactness of constraints, V3 (xy) is limited in Xy and thus, from Lemma B.2, there

exists a Koo-function £y, such that:
ar(loell) < Vi(ze) < By(llaxl), Vo € Xy, (2.15)

Finally, from (2.14) and (2.15), since from recursive feasibility X is a RPI set for the
closed-loop system, V3 (zg) is an ISS-Lyapunov function and, through Lemma B.1, the
system subject to the NMPC control law is [SS-stable. [

2.5 Simplifying Assumptions

In this section, certain common simplifying assumptions, which facilitate the NMPC
design, are presented. First, consider that the state and input constraints are indepen-

dent and polyhedral, that is, there exist compact sets X = {x € R" : H,x < r,} and
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U={ueR™: H,u<r,}, where the matrices H, and H, and vectors r, and r, define

the half-spaces of the polyhedral restrictions, in such a way that Z = X x U, i.e.
T €X, up, €U, VkeN. (2.16)

This assumption simplifies the constraint tightening process, terminal set computation
and optimization algorithm and encompass most practical applications. For instance,
any restrictions of the type :17?“" <y < af and uz’"" < u; < u™ can be written as
polyhedral constraints (2.16). For the feedback law 7: R**™ — R™  in order to maintain
the linearity of the constraints when the virtual inputs are considered, it is interesting to

use a linear feedback, that is
up = m(Tg, vg) = v + Kyz, Vk €N, (2.17)

where the matrix K, € R™*" defines the relationship between virtual and real input®.
Hence, the restrictions on state and virtual input are still polyhedral, and a direct de-

scription of Z is given by

sfern ()= ()} e
u v u ru

For the controller design, quadratic stage and terminal costs are often chosen, with
L(xz,v) = 27Qz + uTRu, w = v + K,x, and Vy(x) = 2TPx. Notice that, in this case,
the positive definiteness and uniform continuity of the cost functions are guaranteed for
any Q,P = 0 € R™ and R = 0 € R™™. Furthermore, L(x,v) > Agm ||z]5 and
Vi(z) < Apa ||z]|5, where Agm > 0 is the smallest eigenvalue of @ and Apy; > 0 is the
biggest eigenvalue of P, and thus Eqs. (2.10a) and (2.11a) are also satisfied.

Finally, considering a linear terminal control law u,(z) = Kz, the decreasing
terminal cost assumption (2.11c) can be rewritten in terms of matrix inequalities, as

shown in Theorem 2.2, adapted for the discrete-time case from [4, Section 5.1].

Theorem 2.2. Consider the nonlinear system (2.1), the terminal control law u,(x) =
Kix and the stage and terminal costs L(z,v) = 27Qx + uTRu, Vi(x) = 2TPz, and let
A eI B e I"™™ be interval matrices satisfying VIf(Anx) € A, VI f(Ax) € B.

If, for any A, € A and B, € B, we have:

(Ag + BJK,)TP(Ay + B,K,) — P+ (Q + KJRK,) < 0, (2.19)

then the decreasing cost assumption (2.11c) is satisfied for all x € Vy.

5A method for choosing K, so as to mitigate the disturbance propagation is presented in Appendix
A.



14

Proof. Given xy € Vy, with w,(zx) = Kz, and 241 = f(2k, us(xy)), then the inequation

(2.11c) can be rewritten as
v Pryy — o Pry, < —23(Q + K] RKy)xy,.

Additionally, through the mean-value theorem and the definition of Vy, there exist A, €
A, By, € B such that:

fzg, u(xg)) = £(0,0) + Apzy, + Bouy(xy)
= (Ay + BoKy)xy.
Therefore, xy11 = (As + BeK};)xy, and Eq. (2.11c¢) is equivalent to:
rp Pryy — 2 Pry, < —2)(Q + K] RK )y,
zp(Ar+ BKy)TP(As + BiKy)xy, — v Pxy, < —x)(Q + K[ RK})xy,
—y

IL((A[ + BgKt)TP(Ag + BgKt) — P)l‘k S X (Q —+ KtTRKt)JJk,

which, based on the matrix inequality (2.19), is satisfied. O

A par of matrices (K, P) satisfying (2.19) can be computed from the vertices of
A and B via Linear Time-Varying (LTV) control strategies [15], considering the LTV
system w1 = Apxy + Bouy, where Ay and By are a convex combination of the vertices of

A and B, respectively.

2.6 Terminal Sets

In order to implement a robust predictive controller as proposed in Section 2.4,
a terminal robust positively invariant (RPI) set Xy C Vy is necessary. In this section,
an algorithm for calculating polyhedral RPI sets [14] based on the definition of precursor

sets is presented.

Definition 2.1 (Precursor Set). Given an autonomous system x.y1 = fi(xx) and a set

X, C R"™, the precursor of X, is defined by the set of states that are steered by the system
to Xy, 1.e.

Pre(X,) = {x € R": fi(x) € A;}. (2.20)

Consider a linear system .1 = Ayx, + wg, with w, € W,, and a polyhedral

set Oy = {z € R": H'% < 7%} C Vn. A sequence of sets Oy can then be created

by induction from Oy by Oy = Pre(O, © W;) N O. Notice that, given a vector y*

satisfying 7§ = maxyew, H; . Afw, we have

Hk Tk
@) =<JdxeR": z < 2.21
N Y 2.21)

"Notice that, if W is a zonotope, v can be obtained algebraically as described in Appendix A.
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and the sequence O}, can be calculated with low computational cost®. Notice that, since
Ors1 € Ok, Yk € N, each set Oy is admissible (O, C Vy). Furthermore, from the
definition of precursor sets, if for some N € N we have Oy, = Oy, i.e. Oy C Pre(On S
W), then Oy is a robust positively invariant set for the system xy,; = Az + wy with
disturbances w;, € W,. For the linear case, this recursive method can thus be used to

obtain an admissible RPI set.

Remark 2.3. If the linear system defined by the matriz A, is stable, a finite N € N such
that Ony1 = Op exists. However, the Oy obtained might be empty. A more detailed

discussion of this algorithm, can be found in [14].

For the general case of nonlinear systems, a linearized model can be considered,
with the nonlinearities treated as additional disturbances. Given the nonlinear system
Try1 = fi(zg) + wy, with wy € W, a linear model 4,1 = Ayxy + Wy, is considered, with
extended disturbances wy € W..; = W, & W,;;, where W,,; bounds the deviation between

the nonlinear and linearized models, i.e.
i(z) = fi(x) — Ayx € Wy, Yz € Vi. (2.22)

However, due to the conservatism brought by considering the nonlinearities as additive
disturbances, the application of this method to obtain RPI sets for nonlinear systems may
result in conservative, or even empty, sets.

In order to reduce this source of conservatism, the set Vy can be scaled by a
parameter A € (0, 1], resulting in a family of sets Vx(A) = AVy. From this contraction of
the terminal constraint, the deviation between nonlinear model and linearized system is

reduced. In particular, a -function a(A) can be obtained in such a way that
W) € a(AM)Wa. (2.23)

In general, « is little-o of X  and the sets W,,;(\) decrease faster than the Vy(\). Outer
limits for the minimal Robust Positively Invariant (mRPI) sets of the linearized system
subjected to the disturbances W; and W,;; (respectively R!_ and R™) are then calculated.
The existence of a RPI set for the linearized system subject to constraints Vy(\) and
disturbance W,p(A) = W, @ Wy (A) is thus equivalent to the condition

RL® a(\)RY C A\Vy. (2.24)

Therefore, the maximal value of A € (0,1], such that (2.24) is satisfied (if it exists),

is searched, and a non-empty terminal set Xy can then be obtained from Vy(A*) and

8Constraint reduction methods can be used in order to limit the growth of the number of halfspaces
of the polyhedral sets.
9A function a() is said to be little-o of X if limy_,o @ =0.
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Wamp(A*). This scaling approach is a contribution of this project and was first proposed
in the related paper [6]. It generalizes the method of calculating polyhedral RPI sets for

nonlinear systems based on linear approximations presented in [14].

2.7 Zonotopes

Zonotopes are a particular class of convex and symmetric polytopes [10]. They
can be represented as the Minkowsky sum of line segments or, alternatively, as the affine

image of an unitary box Bs?, as follows
Z={G,c} =cad GBY, (2.25)

where ¢ € R" is the center, and the columns of G € R™*™s  which are assumed without
loss of generality to be linearly independent, are the generators of the zonotope. The
number of generators n, > n is associated to the complexity of the zonotope, with n, = n
in parallelotopes. A zonotope is said centered when its center is the origin (¢ = 0).

The application of zonotopes on state estimation is partially due to the simplicity
and efficiency of linear transformations and Minkowski sums of zonotopes [1, 35|. Given
7y ={G1,c1}, Zy ={Gy,c2} CTR™ R € R™" we have

RZl = {RGl, RCl}, (226&)
Zl D Zg = {(Gl G2> ,C1 + CQ} . (22613)

Therefore, such operations can be made algebraically, with low computational cost.
Furthermore, efficient methods for calculating the Pontryagin difference of a polytope by
a zonotope [2| and simplifying zonotopes (reducing the number of generators) [10, 35| are
presented in Appendix A. Zonotopes are applied in this project for the computation of
less conservative disturbance propagation sets S(j) and consequent constraint tightening,
as detailed in Chapter 4.

Recapitulation

In this chapter, a review of the state-of-the-art on robust nonlinear model predic-
tive control based on nominal predictions [34, 19| was presented. Tightened constraints,
derived from disturbance propagation sets, were applied to the nominal predictions in
order to ensure robust constraint satisfaction. In particular, the following topics were

discussed:

e System description and closed-loop prediction: The general state-space model of a

nonlinear dynamic system with additive disturbances was presented, and a virtual
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input was introduced in a closed-loop prediction paradigm, with the goal of reducing

the disturbance propagation through the system dynamics.

Disturbance propagation: Sets S(j) which limit the disturbance propagation were
defined, such that @ k41 — ey € S(Jj — 1), Vj = 1...N + 1. Based on these

sets, the tightened constraints were recursively calculated.

NMPC optimization problem and control law: The NMPC optimization problem
was presented, with the control law being defined from the receding horizon policy.
Under typical assumptions on the cost functions and terminal control law and set,

recursive feasibility and input-to-state stability guarantees were presented [34, 19].

Simplifying assumptions: Certain common assumptions on the constraints, costs
and control law were presented, and it was shown how they can simplify the con-

troller design.

Terminal sets: An algorithm to compute polyhedral RPI sets of nonlinear systems
based on linear approximations [14] was presented. A scaling approach, which re-

duces the conservatism present in the linearization, was also introduced |[6].

Zonotopes: Zonotopes and their related operations [10]| were briefly presented as
interesting tools for state estimation and, as will be shown in Chapter 4, disturbance

propagation.



Chapter 3
Constant Disturbance Attenuation

The controller presented in Chapter 2 is recursively feasible and Input-to-State
stable in the presence of disturbances w, € W. However, it presents a typical steady-
state offset if the disturbance mean-value is non-zero, due to two undesired effects: (i)
Prediction error; and (ii) Objective function bias due to the steady-state target mismatch.

In this chapter, a modified NMPC, which avoids these regulation problems, will be
developed, based on the incorporation of a constant disturbance model on the prediction
and target correction, establishing a reachable equilibrium in the presence of the constant

disturbance.

3.1 Equilibrium with Constant Disturbances

Consider that the additive disturbance is given by wy = p+wy, where p represents
the constant portion of the disturbance and limg_,., wr = 0. The output steady-state

condition in the presence of constant disturbances may be described by

Yy

Due to the disturbance effect, a modified steady-state target satisfying

Th = fo(@h ) + 1
0 = ho(h, 70) (3.2)

is sought, in order to regulate the output to the origin. Notice that if g = 0, then Zf = 0,

vy = 0, and the nominal prediction case is recovered.

Assumption 3.1. For a given constant disturbance p € W, consider that there exists a

unique corrected steady-state T = g,(1), = g,(n), where g,: W — R™ and g,: W — R™

18
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are Lipschitz continuous, such that:

fw(f, v) +
h(Z,0). (3.3)

Remark 3.1. From the implicit function theorem [18], Assumption 3.1 is satisfied if

o 8§
I
S|
S|

?

m = p and the following matrix is nonsingular

A (T, v) — I, Bi(T,7)
( C.(T,7)  Di(7, 5)) ’
where Ar, By, Cr and D, represent the linearized system (2.4a) at (Z,v), for all (T,7)
which satisfy T = [(Z,0) + p and h,(T,7) = 0, for some p € W.

In the case of m > p, additional constraints on steady state or input can be imposed
to make the correspondence u — (T,0) unique. For the case m < p, due to the lack of
degrees of freedom, all outputs cannot be simultaneously requlated to the origin and a
modified output function, namely Gr = hpy (2, ug), with hy,: R™™ — R™  should be
specified to replace the original one in order to characterize an alternative reachable output

target.

3.2 Constant Disturbance Estimation

In order to incorporate the constant disturbance model on the prediction and
calculate the modified target (3.1), an estimation of the disturbance mean-value iy is
necessary. The effective disturbance value at £k — 1 can be directly obtained at time k as
Wg—1 = Tk — fa(Tr—1,v5—1). A Bounded-Input-Bounded-Output (BIBO) stable low-pass
filter with unitary static gain can then be used to estimate the disturbance mean-value,
thus attenuating undesired high-frequency noise. The estimated disturbance, namely fi,
is then a filtered version of wy. As an example, it can be obtained through a simple

first-order low-pass filter, i.e.
fir = ajix—1 + (1 — a)wy_1, (3.4)

where 0 < a < 1 is a free design parameter. Hence, a modified steady-state target at
k can be obtained from fi; as 2, = g.(ix), %), = gu(ji), defining a new regulatory
objective such that limg_ o, yx = 0.

Notice that, from the uniform continuity of g,(-) and g¢,(-), the modified targets

are bounded by the estimated disturbances, such that

HA%LkH < pae (|| Afu]]), Hfng < po ([l l]),
|80, || < pau(1A]), |54l < po(llil]), (3.5)



20

where pg.(+), pz(+), pav(-) and p,(-) are K-functions.

Considering the mean-value estimation, the following disturbance sets, besides the
direct bounds on wy, (wy € W), are considered: (i) iy € M, (ii) jigr1 — fir. € DM, and
(iii) wy, — fix € W. For simplicity, 1w, = wy, — ji is defined. Notice that, if i, =0, V& >0
is enforced, then M = DM = {0} and W = W, such that the case without offset
compensation presented in Chapter 2 is recovered. Indeed, this result is an extension to
handle the undesired constant disturbance effects.

Being F(2) the filter transfer matrix from wy, to fix, the auxiliary sets M, DM and
W can be directly obtained from W and F(z). First, notice that the transfer functions
from wy to figr1 — fix and from wy to wy — fi are respectively (z — 1)F(z) and I — F(z).

Therefore, we have
M= |F(2)W, DM =|(z—-1DFE)W, W=[-F)|W, (3.6)

where |H(z)|; stands for the absolute sum of the impulse response of H(z). In the
particular case of a first-order filter, F(z) = %I and M =W, DM = 2(1 — a)WV,

W = 2W. Notice that, as expected, the size of DM is highly dependent on the value of
a, with a smaller DM related to a slower variation of fix (a — 1). Smaller sets DM are
desirable for the disturbance propagation, as discussed in Chapter 4, but this comes at

the cost of slower model update and convergence.

Remark 3.2. It s worth noting that the mean-value disturbance estimate used in the
prediction is not necessarily a filtered version of the disturbance, since, for offset correction
purposes, it is only required that it converges in steady-state to the disturbance mean. As
an example, the difference fi11 — ji can be artificially limited in order to reduce the set
DM, via minimizing the difference ||y, — Ty || subject to fi, € M and i, € DM, where
1y s the output of the filter.

3.3 Disturbance Propagation

As in the case of the controller described in Chapter 2, predictions of the system
trajectory are necessary for the formulation of the NMPC optimization problem. Here,
however, instead of nominal predictions, a constant disturbance model is incorporated,

resulting in the predictions

Thpjik = Ox(J, Th, Vightj—1, Wk),  J =0, (3.7)

where the future disturbances are considered to be constant and equal to the mean-value

estimate at k'. The disturbance propagation sets S(j) must then be modified in order to

!Notice that in the case of jiz = 0, Vk € N, i.e. no steady-state disturbance, nominal predictions are

recovered from Eq. (3.7).



21

limit the difference between the predictions made at k and k+ 1, taking into consideration
the constant disturbance model and its actualization. Therefore, they must satisfy the

following condition:
Condition 3.1.
(i) S(0) is a compact set that contains WV,

(i) S(j), 7 =1...N, is a compact set such that for all x,, T, € R", ug, uy € M and
v € R™ with (z,,v) € Z,6(S(j—1) x{0}), pp — pta € DM and xp, —x, € S(j — 1),
we have (fﬂ(l’b,v) + /Lb} o (fﬂ(llia,v) + :ua) S 8(])

Considering z, = Tpy1k = fx(@k, vi) + fu and x, = 241, we then have x;, — x, €
W C 8(0) and thus, from induction, 44 g1 € Trijn DS —1), j=1... N+1, for any
admissible control sequence Vi x4 n] and estimated disturbance means fix, fix41. Notice

that Condition 2.1 is a particular case of Condition 3.1 when there is no model correction

(i, = 0, Vk € N).

3.4 NMPC with Constant Disturbance Attenuation

This section develops a NMPC control algorithm based on nonlinear predictions
with the incorporation of a constant disturbance model (3.7). The control design is similar
to the one presented in Section 2.4, but adapted in a way to incorporate the mean-value
estimates [i; and the steady-state target correction.

Therefore, at each sampling instant, the state x; is obtained, the disturbance

mean-value fi is estimated, and the following optimization problem Pj (zg, fix) is solved:

N-1

G[kglj]gfl] ; L@kt gk — Lop Ukl — V) + Vi(@rrnpe — 2z (3.8a)

s.t:
Thpjrilk = Jr(Thpilks Vktji) + [k J € Zyp,N-1] (3.8b)
(Thtjlk Vhtjie) € Zx(3),  J € Zp.n-1, (3.8¢)
Tr+N|k € X, (3.8d)

where V|j, 1 v_1) once again represents the future virtual inputs to be chosen, ({7 ) is
the corrected target, and L, (-,-) and V() are respectively the stage and terminal costs.
The tightened constraints Z,(j) are recursively computed by (2.8), with the disturbance
propagation sets S(j) satisfying Condition 3.1.
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For a given estimated disturbance fig, the set of initial states x( € R"™ which provide
a feasible solution to problem (3.8) is the domain of attraction, represented by Xn (o). For
xr, € Xn(fu), the solution of Py (zk, fur) and its associated cost are respectively given by
Vi kv (@, fir) and Vi (g, fu;). For the sake of simplicity, the first mean-value estimate
is considered to be zero, i.e. fig = 0.

As in the case without constant disturbance attenuation, the terminal set X'y must
be an admissible Robust Positively Invariant (RPI) set, with an uniformly continuous

terminal control law v;: Xy — R™ with u;(7) = 7(z,v,(z)), u;(0) = 0, such that:?
Assumption 3.2 (Robust Invariant Set).

(1) The terminal set is compact and contains the origin as an interior point, where Xy C
Vv ={z € R": (z,u(x)) € Ay} and Ay C Z(N) = {(z,7(z,v)) € R**™: (z,v) €
Z,.(N)} is the N-step-ahead admissible set.

(1t) The terminal set Xy satisfies:

flx,u(z) ®M B S(N) C Xy, Vo € A (3.9)

Finally, the following typical set of assumptions are imposed to ensure Input-to-
State stability:

Assumption 3.3 (Input-to-State Stability).

(i) Let L.(x,v) be a definite positive, uniformly continuous function such that, for any

feasible x and v:

La(z,v) Zap([[x]]), (3.10a)
|Lr(@1,01) = La(@2, v2)| SAa([|w1 — 2]]) + Au([Jor — v2)), (3.10b)

where Ay and X\, are K-functions and oy, is a Kso-function.

(i1) Let the terminal cost function Vi(x) be a definite positive, uniformly continuous

function in X; such that, for any x € X;:

0 < Vi(z) < Bu(l=]]), (3.11a)
Vi(@1) = Vi(@a)] < 0(flzr — 2], (3.11b)
Vi(fa(@,v4(2))) = Vi(2) < —=La(2,v,(2)), (3-11c)

where By is a Ky -function and 6 is a KC-function.

2The set Xy is defined as Xy = {z € R": & = x5 — g, (u), xy € Xy, u € M} D Xy.
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Notice that these assumptions are analogous to the ones presented in Section 2.4,
with the small distinctions that X'y must be a RPI set for disturbances w, € M & S(N)
and (3.11c) must be satisfied for all z € Xy,

From the receding horizon policy, the NMPC control law is thus given by

= K, i) = (g, 0}, (3.12)

where v} is obtained from the solution of P (g, fix). The proposed strategy is then for-
mally able to deal with the main undesired effects of the steady-state constant disturbance,
as prediction error and equilibrium target are corrected in steady-state.

Recursive feasibility and Input-to-State stability are then assured through Lemma
3.1 and Theorem 3.1.

Lemma 3.1 (Recursive Feasibility).
Giwen x, € Xn(f), then iy = f(zg, ku(xr, k) + wi € Xn(fugr) for all wy, € W,
figs 1 € M, fuyr — fue € DM, wy — fir, € W.

Furthermore, given the optimal sequence virtual inputs ¥* (g, fiig) = (5, ..., V_1),
then V¢ = (v7, ..., vn_1, v(@}, 1)) defines a feasible (candidate) solution of Py (x+1, fu+1)-
Proof. Consider the optimal solution at k, ka,k N1 and the candidate solution at k41,
Ve = (v,’:H‘k, . ,UZ+N_1|k,vt(xz+N|k)), which provide the optimal and candidate predic-
tions given by x};ﬂlk = fw(x,’gﬂ_”k, v,’;ﬂ_l‘k)—i-ﬂk and I2+j|k+1 = fw($2+j_1|k+1= U/(é+j—1|k+1)+
fix+1, respectively. Given Tiiijpr1 = Thtl = Jr(xp, vf) + wy combined with (i) w, =
wg — i, and (ii) Thya = fr(g, v5) + fig, then Th1hr1 — Thoae = Wk € W. Now, based
on Condition 2.1, z} ;) € ¥4, ®S( — 1), j=1... N is ensured.

Therefore, the constraints (z} ., Vi, ) € Zx(4), J=0...N—1land 23y, € Xy
directly imply that (27,11 Viriiginet) € Chirage Vi) ©{S(U) X0} € Z2(5), j =
0...N — 1 due to the condition Xy C Vy and the definition of the tighter constraints
(2.8), where vy, ). = ve(z}, ;) is defined for simplicity of notation.

For the terminal constraint, we use the fact that & is defined as a robust admis-
sible invariant set (3.9). Notice that the candidate solution is such that Tl 1aN|b+1 =
Fe(@ N V(T ) + fir. Therefore, @y vy € Fr(@hy v 0Ty ap)) + ks @
S(N). Hence, as z;, ) € Ay, then af,,, v,y € Xy because fr(zp, iy, ve(Th yp)) @
M@ S(N) C X from the terminal set definition. In summary, ¥° is a feasible candidate,

which completes the recursive feasibility proof. O

Theorem 3.1 (Input-to-State Stability).

System (2.1) subject to the MPC' control law (3.12) is input-to-state stable. That is, for
any initial state xo € Xn(0) subject to wy, € W, jix € M, figs1— fix € DM, wip— fir, € W,
Vk >0, then

e = 2l < B0 — o]l 5) + 1ol 313
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where B is a ICL-function, v is a K-function, and 33“570 1s given by the filter initial condition.

Proof. The feasible solution candidate v, through the standard MPC stability argument,
is used to show that V3 (zg, fix) is a ISS-Lyapunov function for system (2.1) subject to
the control law (3.12)3.

Firstly, the following bounds hold due to filter stability:

k]l < cun W] 18R]l < cun [[Wiom]] s 11l < cus ||Wion

Y

for some ¢y, Cy2, Cw2 > 0 € R. Through Eq. (3.5), we also have:

),

s 18]l < puleus lwioa D)

|AZG i1 || < paw(cw [[Wiomg[Ds (|26, < prlews [|Wiow

1A% || < paoleuz Wi

Now, the optimal predicted evolution at k and the predicted candidates at k + 1 can
be represented by x*(j) = x} . — Top, and x°(j) = Tkt — 20141 Tespectively.
Moreover, consider j, n 1y = [r(@hnp Vipnp) + ke (N + 1) = 2 vy — 0 1o
v*(j) = Uik — Vo V(7)) = Uhijialk — g 1, Where UkiNle = vt(xz+N‘k). A modified
Tl tjlkt1 o4 with @7, (7) = 2°(j) + Adg sy, The
analogous definition holds for v¢ (7). Since the model is uniform continuous, there exist

KC-functions &,(+) such that

candidate is defined by z¢,(j) =

HxZ+1+j|k+1 - $Z+1+j|k|| < 0j(cun HW[ka]H)v vj € Ny,
where ¢4 > max(cy1, cy2), and we define aj(Hw[Qk]”) = Gj(Cuwa HW[M]H). Define the
following cost variation for notation simplicity:
ALz (j, 2, v) = Lr(2°(5), v°(j)) — L (2" (5 + 1), v*(j + 1)),

ALT (G, x,0) = Le(27,(5), 07 (5)) = L (27 (5 + 1), 07(F + 1)),
AVi(x) = Vi(2“(N)) = Vp(@"(N +1)).

=L
=L

From the uniform continuity of the cost functions (Eqgs. (3.10b) and (3.11b)), the

following inequalities are thus verified:

| AL (j, x,0)] SIALT(f,2,0)] + Aa(paz(cwz || Wion |]) + Ao (pav(cuz ||Wom]]))
<X (05([[Wioa ) + Aa(pas (o [|Wio]]) + Ao(pa(coz [[Wio )
=& (|[wio ),
<d(on([[wiou]) + 0(paz(cuz [[Wiom])
=&v(|[wiom]),

| AV (@)

3For notation simplicity, the dependence of V3 on jix is omitted through this proof.
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where 5% and &y are K-functions. Additionally, from the uniform continuity of f.(-), vi(+),

and V() and the bounds on Hi’ng and ||fi||, the following inequality also holds:

IVy (@ (N + 1)) = Vi (f(a™(N), v (M) < & (||wiou ),

where ¢ is an appropriate C-function.

Therefore, by means of adding and subtracting Zjvzl L (x*(j),v*(j)) + Vi(ax* (N +
1)), combined with the bounds of AL, (j,z,v) and AVy(z), and by using Eq. (3.11c), the
candidate cost is bounded by:

Vi(ons) = 3 Lala(G),0°3) + Vi(a“(N)
< ‘_ Lo(a* (), 0° (7)) + La(a* (N), wy(a* (N))) + V(" (V + 1)
+ & (wpml) + & (|wou)

+ 0(||wios ||) — L=(2*(0),v*(0))

<Vi(xr) — ap(||ze — 2, |) + 00| wom]));

where H(HW[QHH) = Z;Y;OI 5£(||w[0,k] )+ fv(HW[Qk]H) + w(HW[OJg]l ) is a KC-function. The

property of decreasing cost is thus ensured, since by optimality V3 (zg41) < Vi (Tr41):
V(@) = Vi (an) < —ap(||lzn — @6, ]|) + 0| wiom |- (3.14)

Now, notice that V3 (zx) > Lr(x*(0),v*(0)) > ozL(”xk —:i“gk”) and, for x € A&, the
unconstrained terminal control law is admissible throughout the entire prediction horizon
and by optimality V3 (zx) < Vy(2*(0)) < Bv(||lzx — @ 4|)), Vor € Xf. Furthermore, from
the continuity of the costs and compactness of constraints, V3 (xy) is limited in Xy and

thus, from Lemma B.2, there exists a Ko-function 3, such that:

ar([|z — jgk”) < V() < By (||la — i

), Vx, € Xy (315)

Finally, from (3.14) and (3.15), considering the modified state &) = xy — 2, Vi (zy) is
an ISS-Lyapunov function and, through Lemma B.1, Eq. (3.13) is satisfied. O]



26

Therefore, this NMPC control algorithm formally incorporates the mean-value dis-
turbance estimates and steady-state correction into the prediction model and optimization
problem, maintaining recursive feasibility and ISS-stability guarantees. The main char-
acteristics of this controller, in particular the offset correction provided in the presence of

constant disturbances, are further illustrated through case-studies in Chapter 7.

Recapitulation

In this chapter, the problem of steady-state offset in the presence of constant
disturbances was tackled. The NMPC presented in Chapter 2 was modified in order
to avoid this undesired effect, via incorporating a constant disturbance model into the

prediction and correcting the target. In particular, the following topics were discussed:

e Reachable equilibrium in the presence of constant disturbances: It was shown how a
modified equilibrium can be defined such that the equilibrium condition is satisfied in
the presence of a constant disturbance, while the output is still steered to its desired
value. The conditions under which this equilibrium point is uniquely defined by the

constant disturbance were also presented.

e Constant disturbance estimation and disturbance propagation: The process of es-
timating the disturbance mean-value via filtration of the measured additive dis-
turbance was presented, and the disturbance propagation condition discussed in
Chapter 2 was generalized in order to incorporate the estimated disturbance means

and their actualization.

e Robust NMPC with constant disturbance attenuation: The model predictive con-
troller with the incorporation of the estimated disturbance mean into the prediction
model and target correction was presented. Under similar assumptions as in the
nominal prediction case, it was shown that recursive feasibility and input-to-state

stability are still guaranteed.



Chapter 4
Zionotopic Uncertainty Propagation

In this Chapter, algorithms for the computation of disturbance propagation sets
S(j) based on the zonotopic mean-value extension is presented. As mentioned in Section
2.3, for linear systems it is possible to compute the smallest sets S*(j). In the nonlinear
case, however, more conservative outer bounds must be considered.

A simple disturbance propagation method for nonlinear systems uses Lipschitz
constants [19] and is described in Section 4.1. However, the resulting sets tend to be
rather conservative, since this approach propagates the worst-case gain identically in all
directions. The method via zonotopes proposed in Section 4.2 does not present this sort
of conservatism.

It is then proven that the proposed approach results in smaller sets S(j) than
the ones obtained by the Lipschitz infinity-norm and thus less conservative tightened
constraints Z,(j), as well as a potentially larger domain of attraction. Finally, a natural

extension to constrained zonotopes [35] is presented.

4.1 Method via Lipschitz Constants

Given L, € R a Lipschitz constant for f, in Z., ie. |[fr(2p,v) — fa(za,v)|| <
L, ||xp — x| for any (z4,v), (zp,v) € Z5, and §(0) = {x € R" : ||z| < wyn} 2O W, sets
Si(7) that satisfy Condition 2.1 can be given by

S(j)={weR": |w| < Liw,}, j=0...N. (4.1)

If a constant disturbance model is incorporated into the prediction, the more gen-
eral Condition 3.1 must be considered. With this in mind, if w,,,d,, € R are such that
WC{weR": ||w| <w,}and DM C {§ € R"* : ||§]| <}, sets S/'(j) satisfying
Condition 3.1 are given by

St ={weR" |w| <wr(j)}, j=0...N, (4.2)
27
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where wr(j) = Liw, + (Zf;é L;) dm . Notice that each set S(j) is defined by the
scalar wp(j) € R, with w(j + 1) = Lywr(j) + 0. The worst case gain, represented by
the Lipschitz constant, is thus propagated equally in all directions and any asymmetries
of the model function f, are lost.

Another idea for computing disturbance propagation sets would be using interval
analysis to propagate box constraints through the system dynamics. Indeed, given the
interval set § = {(z,v) € R™™: g7 < aj < %%, o™ <y < o', j=1...n, i =
1...m}, interval extensions could be used to obtain an outer approximation of f(S).

However, in order to obtain sets S(j) satisfying Conditions 2.1 or 3.1, the image
of (x4,v) @ (S(j) x {0}) needs to be considered, where (z,,v) € Z,(j — 1) is not known
a priori. This means that interval analysis is not applicable, since even if Z,(j — 1) and
S(j) are interval sets, the set {(zq,v,2p) € Z:(j — 1) x R": 2, — z, € S(j)} is not an
interval, and thus an interval outer approximation of f(xy,v)— fr(x,,v) cannot in general
be obtained through interval analysis methods.

In the next section, a zonotopic disturbance propagation method, which is less
conservative than the Lipschitz method and can directly deal with any (x,,v) € Z:(j—1),

is proposed.

4.2 Zonotopic Method

In order to calculate disturbance propagation sets which satisfy Conditions 2.1
and 3.1 using zonotopes, an algorithm for obtaining an outer bound for the image of
a zonotope X = {G,c} C R™ by a nonlinear function ¢: R™ — R" is necessary. In
particular, we need a zonotope Y C R" that satisfies ¢(X) C Y.

Lemma 4.1 |1, 31] allows the computation of a zonotopic extension of the product

of a centered zonotope by an interval matrix.

Lemma 4.1 ([1]). Given a centered zonotope X = MBs! C R™ and an interval matrix
J € I"™™, consider the zonotope family Z = JX = {Jzx: J € J, v € X}. A zonotopic

inclusion o(Z) is defined as
o (Z) = mid(J)X @ PB, (4.3)

where P is a diagonal matriz satisfying

Pi=33 rad@)ulMyl, i=1...n, (4.4)

j=1 k=1

From these definitions, we have Z C o(Z).
Tt M = {0} (6, =0, Wy, = wyy,), then wr(j) = Liw,, and Eq. (4.1) is recovered.
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Proof. Given x € X and J € J, we have x = M¢ and Jy, = mid(J)i + rad(J) ik,
where & € [-1,1], j=1...ng ¥y € [-1,1], i =1...n,j = 1...m. Therefore, for any
z = Jx € Z, we have

g

(z — mid(J Z'f’ )it M ir;

=1 k=1

and, since |¢;p&;] < 1, |(z — mid(J)M¢);| < Z] Lo rad(3) | Myj| = Py and (2 —
mid(J)M¢) € PBL. Therefore, we have z € mid(J)X & PBYL = o(Z). O

Based on Lemma 4.1 and the mean-value theorem, Theorem 4.1 |1, 31| defines the

mean-value extension of zonotopes.

Theorem 4.1 (Mean-value zonotopic extension [1]). Given ¢: R™ — R" a class C!
function, X = h® MBs C R™ a zonotope and J € I™™ an interval matriz satisfying
VTp(X) C J, we have

() © (mid @M P) B, (4.5)
where P is defined as in (4.4).

Proof. From the application of the mean-value theorem, given y € (z), with z € X,
there is a J € J such that:
y=p(h)+J(x —h).

Then, from Lemma 4.1, we have J(z — h) € o(J(X — h)) and thus y = ¢(h) + J(z — h) €
o(h) ®o(J(X — h)). O

Based on the mean-value extension of Theorem 4.1, an algorithm for the iterative

computation of zonotopes S,(j) C R" satisfying Condition 2.1 can be developed.

Property 4.1. Consider the nonlinear system with additive disturbances (2.4a) and let
Jr € I™™ be an interval matriz satisfying VIf.(Z:) C J.. Consider the zonotopes
S.(j), 7=0...N defined by

(1) S.(0) is a centered zonotope which contains V.

These sets satisfy Condition 2.1.
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Proof. The condition of S,(0) compact with W C S.(0) is satisfied by design. For each
j=1...N and given any z, € R” and v € R™, with (z,,v) ® (S.(j — 1) x {0}) C Z,,
consider the function ¢: R™ — R™ defined by ¢(x) = fr(x,v).

From X, =z, ® S.(j — 1), with X, x {v} C Z,, we have VTp(X,) C J,. Thus,

from Theorem 4.1,

fr(Xa,v) = 0(Xa) € @(2a) ® 0(J2S.(j — 1))
fr(Xa,v) C fr(2a,v) ® S:(7)

and for any @y, € Xo, fr(21,0) € fr(2a,0) ® S.(5). m

The sets S,(j) given by Property 4.1 can, therefore, be applied in the constraint
tightening approach described in (2.8). Notice that, unlike the Lipschitz method, this
algorithm considers the form of the nonlinear function f, through the interval matrix J .

An interval matrix J, satisfying VIf.(2,) C J, can be directly obtained from
I(Z,) by means of interval arithmetic [28]. Alternatively, if J, € I"*" and J,, € I"*™ are
such that VIf(Z,) CJ, and VI f(Z;) C J,, we have

I, =3, +J.K,, (4.6)

where the matrix sums and products are made through interval arithmetic [28]. Equation
(4.6) emphasizes the effect of the feedback matrix K, on J, and, consequently, on the
sets S,(j), and can be used to choose a matrix K, in order to reduce the disturbance

propagation, as proposed in Appendix A.

Remark 4.1. Due to the zonotopic inclusion, the number of generators of the zonotopes
S.(j) increases for each iteration. Methods for complezity reduction [10, 35], such as the
one described in Appendiz A, can be used to restrict the number of generators of each

S.(j) to a predefined value.

Remark 4.2. The Pontryagin difference of a polytope by a zonotope can be made alge-
braically with low computational cost (Appendiz A). This simplifies the constraint tight-

ening process for the case of polytopic constraints Z,.

For the constant disturbance attenuation case, the changes on the mean-value
estimate /i influence the one-step-ahead disturbance propagation, since the sequence of
future disturbances w considered is potentially different at the instants k£ and &£+ 1. This
effect can be taken into consideration by adding the set DM at each iterative step in the
definition of the S,(j), as detailed in Property 4.2.

Property 4.2. Consider system (2.4a), a centered zonotope DM C R"™ and an interval
matriz J, € T with DM C DM and VI f.(Z,) C J.. Consider the sets S*(j), j =
0...N defined by
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(i) S(0) is a centered zonotope that contains W.
(ii) St(j) = o(JSt(j —1)®DM, j=1...N.
Such zonotopes satisfy Condition 3.1.

Proof. The first condition is satisfied by design. Considering x,,z, € R", v € R™ and
Ha, i € M as given in the second condition for some j =1... N, and A; = (fr(zp,v) +
) — (fr(xa,v) + 11q), since x, — z, € S#(j — 1), we have

Aj = (fr(26,0) = fr(Ta;v)) + (s — fa)
€ 3,84 — 1)+ (o — )
C o(J:SL(j — 1)) ® DM = SL(j).

Therefore, the sets S¥(j) satisfy Condition 3.1. O

Notice that Property 4.1 can be seen as a particular case of Property 4.2 for the
nominal prediction case (DM = {0}, W = W). The size of the sets S¥(j) is highly
dependent on the set DM. Indeed, ji; is used to estimate the constant steady-state
disturbance condition, but transient effects, and thus changes in the prediction model,
are taken into account in the set DM. As discussed in Section 3.2, if necessary DM can
be significantly reduced from the definition of the constant disturbance estimates jig.

Notice that, in the recursive construction of the sets S¥(j) proposed in Property
4.2, the set DM is added at each step, which amounts to considering a potentially different
Af(j) € DM for each j =1...N. This comes from Condition 3.1, which considers that
(fa(xp,v) + ) — (fa(Ta,v) + 11a) € S(j) must be satisfied if x, — 2, € S(j — 1), for any
a, iy € M, iy — jtg € DM, where the pair p,, 11, may be different for each j =1... V.

However, the sets S(j) are only required to limit the differences p 14 k11 —
Tr144k, J = 0... N, and the predicted trajectories (Tx41+4jjk, Trt+14jk+1) are obtained
from the same pair of disturbance estimates (fiy, fix+1) for every j = 0... N. Therefore,
considering a potentially different pair of disturbance estimates p,, iy at each iterative
step, as done in Condition 3.1, can be conservative.

Taking this aspect into consideration, Property 4.3 provides an alternative algo-
rithm to compute zonotopes S, (j) which limit the one-step-ahead disturbance propagation
when a constant disturbance model is incorporated, which does not suffer from this source

of conservatism.

Property 4.3. Given the system (2.4a), a zonotope DM C R™ and an interval matriz
J, € IV, with DM C DM and VIf.(Z,) C J,, consider the sets S_é‘(j), j=0...N
defined by

SE(j) = 8°(j) ® o(T;DM),



32

where 8°(0) is a zonotope that contains W, S°(j + 1) = o(J:8°(4)) and Ty = 0,
T =1+ J,T;.2 These zonotopes satisfy Ty jjk+1 € Thijlk ®SF(j—1), j=1...N+1
for predictions (3.7) and can thus also be used for constraint tightening purposes in the

constant disturbance attenuation case.

Proof. It will be shown that zp i1 yjpt1 — Tagipje = 85 + TjAfgr, j = 0... N, for
some §; € S8%(j) and T; € T;. First, notice that zp1y — Tpqpapp = Wi — fix = So, Where
so € W C 8°j) (we have ToAfipy1 = 0, since Ty = 0). Now, considering by induction
that T k1 — Terje = Sjo1 + Tjo1Digs1, with s;_1 € S°(j — 1), Tj—1 € T;_4, there
exists J € J such that

That4jlb+1 — Ttk = Jo(@rjern; V) + e — (Fr(@repins vg) + fur)
= J(sj-1 + Tjo1Dftgs1) + Dflgta
=Jsj1+ (JTjo1 + 1) Afigra
= 55 + TjAftg1a,

where s; = Js;_1 € 8%(j) and T; = [ + JTj_; € T,. Finally, since Ajiy4; € DM C DM,
we have xk+1+j|k+1 — fl?k+1+j|k = S§j + TjAﬂk.,_l S So(j) © O(TjDM). ]

Remark 4.3. Notice that both zonotopes S.(j) and S_ﬁf(j) obtained from Properties 4.1
and 4.3 are reduced in the linear case (fr(x,v) = A,x + Bv) to the optimal disturbance
propagation sets: S*(j) = AIW and S*(j) = AAIW @ (ZZ;& AZ) DM in the nominal and

constant disturbance model cases, respectively.

4.3 Comparison of Criteria

In this section, the conservatism reduction brought by the zonotopic methods is
formalized by showing that the zonotopic disturbance propagation sets are contained in
the ones computed by the Lipschitz infinity-norm method. The infinity-norm is considered
in order to simplify comparisons between both approaches, since in this case the S;(j) are
boxes and, therefore, also zonotopes.

For the calculation of an infinity-norm Lipschitz constant for the system dynamics
function f.: Z; — R", the following theorem from multivariable calculus [18] can be

applied.

Theorem 4.2 ([18]). Given a function ¢: R® — R" of class C', a conver set X C R"

and a norm ||-|| : R™ = R, a real number L > 0 is a Lipschitz constant for ¢ in X, that

2T and O represent here the degenerate interval matrices consisting, respectively, of only the identity

and null matrices of appropriate dimensions.
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18
lp(ze) — @(za)ll < Lz = all, Vi, 2 € X, (4.7)
if and only if the jacobian VTp: R™ — R™ ™ satisfies
IVTp(z)| < L, VrelX, (4.8)
where ||-|| in (4.8) represents the induced norm of the linear transformation.

Therefore, being J, € I™*™ an interval matrix satisfying VIf.(Z,) C J,, an

infinity-norm Lipschitz constant for f, in Z, is given by
L, = 4.
T 1l (4.9)

that s, we have | fx(zp, v) — fx(2a,0)]
Based on this relationship between J, and L., Theorem 4.3 and Corolary 4.1 prove that

< Ly ||wy — 4], for all (z4,v), (z,v) € Z,.

o0

the zonotopic disturbance propagation sets can be easily defined to be contained in the

respective Lipschitz sets.

Theorem 4.3. Consider system (2.4a) and let J, € "™ be an interval matriz satisfying
Vife(Z:) C Ji. Let S*(j) and S_é‘(j) be zonotopes obtained by the methods proposed
in Properties 4.2 and 4.3, respectively, and S}'(j) be boxes defined by Eq. (4.2), with
L, = maxyey, ||J||. Assuming S*(0),SE(0) C SH(0) and DM C 6,,8%, we have
St(j), SE(j) € 8(j) for all j=0...N. 3

Proof. This proof will be separated into two parts, the first corresponding to the affirma-
tion S¥(j) C S/'(j) and the second to S¥(j) C S/'(j). The notation ¢(A) introduced in
Appendix C to represent the diagonal matrix whose elements are the sums of the lines of

the matrix A will also be used.

(i) Since 8#(0) C &,(0), it is sufficient by induction to show that S¥(j) C S/(j) implies
SHG+1)CS(j+1)forall j=0...N—1.

Given S!(j) = MBS, we have
S.(j+1) =(3:S.(5)) @ DM
C (midJ)M  u(rad(3,)[M]) 5,1) B2

Defining M = (mid(Jw)M t(rad(J;)|M|) 5ml>, we have
M| = macx (u(mid(I ) M )i + e(rad(I ) M])ii + 6m)

< max (¢(J*[M|)ii) +

= |7 M [l + O,

3A, B C C is used here as a compact way of representing A C C and B C C.
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where J* = |mid(J;)|+rad(J;). Notice that, from the induction hypothesis S¥(j) C
S/(7), IM||,, <wr(j). We also have ||J*|| = maxyey, |||, = Lz, therefore,

|M|| < 1T [M]]] o + Om
< [T 1M ]|, + 6

which corresponds to S#(j + 1) = MBX ™" C §,(j + 1).

(ii) Based on the previous proof, considering the particular case of DM = {0} and
8 = 0, we have 8°(j) C Liw,,B", j =0...N. Therefore, it suffices to show that
o(T;DM) C (302, Ly)0mBl, ¥j=0...N.

Notice that, from induction, ||T;|_ < SV LE, V¥j=0...N, since the equality is
trivially valid for j = 0 and ||T;41]| < |1l + [J#]lo HTjHOO =14 L, |T;|.*

Therefore, being DM = MB5, we have

So(T;DM) = (mid(T;)M  1(rad(T;)|M])) Bt
C (lmid(T;)M|) u(rad(T,)|M|)) B2
C |77 |Mml|| B
where 17 = |mid(T;)| + rad(T;). Finally, since HT*

from DM C 6,85, M|, < 0m, [|T5IM]|| < [|T7]|,
o(T;DM) C (32020 L2)5,,B7 follows.

= T, < Sy L and,
M|, (ZJ 1L’)é and

]

The restrictions S#(0),SZ(0) € &;(0) and DM C 6,,B% can be trivially satisfied
by making S*(0) = SZ(0) = &(0) and DM = 6,82, since every box is a zonotope. The
liberty of considering any zonotopes as S, (0), S¥(0) and DM can provide still another

source of conservatism reduction.

Corolary 4.1. Consider system (2.4a) and let J, € I"*™ be an interval matriz satisfying
VIfe(Z:) CJr. Let S.(j) be zonotopes computed through the method proposed in Property
4.1 and §,(j) = Liw,BYL be boxes, with L, = maxyey, ||J||,, and W C §(0) = w,,BL.
Assuming S.(0) C §/(0), we have S.(j) C Si(j) for all j =0...N.

Proof. Follows from Theorem 4.3 by making DM = {0}, W = W and 6, = 0. n

“The infinity norm of an interval matrix A € I™*" is used here to compactly represent [|A|_ =

maz aea || Al
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4.4 Extension to Constrained Zonotopes

The disturbance propagation via zonotopes proposed in Section 4.2 requires zono-
topic outer approximations of the additive disturbance set YW and, for the constant dis-
turbance attenuation case, of the mean-value estimate actualization set DM. However,
due to the inherent symmetry of zonotopes, these approximations, and the sets S(j) that
ensue, can be rather conservative in case the sets WW and DM are asymmetrical. This
outer approximation problem can be mitigated by considering constrained zonotopes (CZ),
which are not necessarily symmetrical and do not suffer from this source of conservatism.®
Constrained zonotopes [35, 31| are an extension of zonotopes, considering the pres-

ence of linear constraints on the generators. A constrained zonotoped is defined by:
Z={z=c+Ge: [l <1, Ac =0}, (4.10)

where, as in zonotopes, ¢ € R" and G € R™ " are the center and generator matrix of
the constrained zonotope. The matrix A € R"*™ and vector b € R" represent the
linear constraints on the generators, which are assumed without loss of generality to be

independent (A is a full-line rank matrix). For simplicity of notation, we use
Z =c®GBL(Ab) ={G,c, A b}, (4.11)

where Boo(A,b) = {£ € R™: ||£]|, < 1, A{ = b} is a constrained unitary box. The
Minkowski sum and linear transformation of constrained zonotopes can also be made alge-
braically with low computational cost. Given Z; = {G1,¢1, A1, 01}, Z1 = {Ga, co, A2, ba} €
R™ and R € R™*" we have:

RZl = {RGl, RCl, A, b}, (412)

A1 0 bl
Zl () ZQ == {(Gl GQ) ,C1 + Co, < 0 AQ) s <b2> } . (413)

The mean-value extension of zonotopes presented in Section 4.2 can then be extended for

constrained zonotopes, as shown by Lemmas 4.2 and 4.3 [35, 31].

Lemma 4.2 ([31]). Given a centered constrained zonotope X = MB(A,b) C R™, an
interval matriz J € T"™ and a zonotope X = MBY O X, consider the set Z = JX =
{Jx: J€J, v € X}. A CZ-inclusion A(Z) is defined as

a(Z) = mid(3)X & PB™, (4.14)

where P is a diagonal matrix satisfying
g

Py=> Y rad@)uMy|, i=1...n. (4.15)

j=1 k=1

®In fact, as shown in [35], any convex, compact polytope can be represented as a constrained zonotope.



From these definitions, we have Z C <(Z).

Proof. This proof follows the same arguments as that of Lemma 4.1. Given z € X C X
and J € J, we have 2 = M¢ and Jy = mid(J)y + rad(J) b, where &el-11], j=
L...ng, Yy € [-1,1], i=1...n,7 =1...m. Therefore, for any z = Jx € Z, we have:

(z —mid(J)x); = Z Z rad(J)i M g,

j=1 k=1

mid(J)x) € PBL . Therefore, we have z € mid(J)X @ PBY = <(Z). O

and, since |1;x&;] < 1, [(z — mid(J)z);| < E;Lil S rad(Y)x|My;| = Py and (2 —

Lemma 4.3 ([31]). Given ¢: R™ — R" a class C' function, X = h & MBy(A,b) C R™

a constrained zonotope and J € I"™™ an interval matrixz satisfying Vip(X) C J, we have

(X)) Co(h) ®AI(X —h))
— o(h) ® mid(J)MBo(A,b) & PB, (4.16)

where P is defined as in (4.15).

Proof. From the application of the mean-value theorem, given y € ¢(z), with z € X,
there is a J € J such that:

y=w(h)+ J(x —h).
Then, from Lemma 4.2, we have J(z — h) € <(J(X — h)) and thus y = p(h) + J(z — h) €
e(h) ®<(J(X — h)). O

Finally, in Property 4.4 the mean-value constrained zonotope extension is applied
to generalize the disturbance propagation methods proposed in Section 4.2 to constrained

zonotopes.

Property 4.4. Consider system (2.4a), a centered constrained zonotope DM C R™ and
an interval matriz J,. € I"*", with DM C DM and V1If.(Z;) C J,. Consider the sets
S.(j), S*(j), 7 =0...N recursively defined by:

(i) S.(0) and S*(0) are centered constrained zonotopes such that W C S,(0), W C
S(0).

(i) S.(j) = (TS0 — 1)) and SH(j) = (3,84 — 1) ®DM, j=1...N.
The sets S.(j) and S¥(j) satisfy Conditions 2.1 and 3.1, respectively.

Proof. Analogous to the proofs of Properties 4.1 and 4.2, with the mean-value CZ-

extension <(-) replacing the zonotopic one. O
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Remark 4.4. From Theorem /.4, at each propagation step the number of generators and

constraints of S¥(j) increase by n + nl and n?

- D D
¢ » respectively, where ng and n; are the

number of generators and constraints of DM. Analogously, S,(j) has n more generators
than S.(j — 1). The number of generators and constraints of the disturbance propagation
sets can nonetheless be limited via considering the algorithms for reducing the number of

generators and constraints of constrained zonotopes proposed in [35].

Remark 4.5. Notice, from Lemma 4.2, that an outer zonotopic approximation of a con-
strained zonotope is needed in order to compute the mean-value extension and thus the
disturbance propagation sets. This can be computed via reducing the number of constraints
of the constrained zonotope via the method proposed in [35] until there are no more con-

straints, i.e. we have a simple zonotope.

Remark 4.6. The Pontryagin difference of polytopes and constrained zonotopes, neces-
sary in this case for the recursive constraint tightening of Eq. (2.8), cannot be made
algebraically as in the zonotopic case (Appendiz A) and thus has a higher computational

cost. However, it is equivalent to the linear program of mazximizing h7(c + G§) subject to

€€ B.u(Ab) [31].

Recapitulation

In this chapter, the zonotopic disturbance propagation method, based on the mean-
value extension [1], was presented and compared to the approach based on Lipschitz

constants. In particular, the following topics were discussed:

e Disturbance propagation method based on Lipschitz constants: A method to com-
pute disturbance propagation sets S(j) using a Lipschitz constant L, of the model
function was presented. These sets are defined by an upper bound on the norm
Thtjlk+1 — Thjlk, Which is multiplied by L, at each prediction step, thus propagat-

ing the worst-case gain in all directions.

e Zonotopic methods: Zonotopic methods to compute sets S(j) satisfying Conditions
2.1 and 3.1 were proposed, based on the product of a zonotope by an interval matrix

and the mean-value extension of zonotopes [1].

e Comparison of criteria: The zonotopic and Lipschitz criteria were compared, and
the zonotopic approach was shown to be less conservative than the infinity-norm
Lipschitz method. The zonotopes were also shown to be reduced to the optimal

disturbance propagation sets S*(j) in the linear case.
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e Extension to constrained zonotopes: The disturbance propagation methods were
extended to consider constrained zonotopes [35]|, which can reduce conservatism in

case the initial disturbance set WV is asymmetric.



Chapter 5

Robust NMPC for Tracking

In this chapter, the robust NMPC algorithm for regulation proposed in Section
2.4 will be extended to the reference tracking case. For such, the references, considered
piece-wise constant, must be associated with admissible equilibrium points, similar to the
steady-state correction presented in Section 3.1.

The proposed robust nonlinear predictive controller for tracking is then presented,
as well as the associated assumptions to be satisfied by the cost functions and terminal
ingredients in order to assure recursive feasibility and Input-to-State Stability (ISS). An
artificial reference is included as an additional variable in the optimization problem, such
that the controller feasibility is independent of the desired steady-state. Finally, simplified

methods for the computation of the terminal ingredients are presented.

5.1 Equilibrium Condition

A nominal equilibrium point of system (2.1), associated to the steady-state output

ys, can be represented by the pair (z, u,), with the equilibrium condition given by

Ts = f(xa Us)

Ys = h<xs;us)- (51)

Given a set of constraints (x,u;) € Z, the set of admissible equilibrium points

Z,(Z) and the set of reachable references J;(Z) of the system are thus given by

(z,u) € Z:x = f(z,u)}, (5.2)
y=h(z,u): (z,u) € Z,(2)}, (5.3)

where Z = {z € R"™: 2+ ¢ € Z, V||| < €}, with € > 0 an auxiliary parameter

included in order to avoid the boundaries of the constraint set. Notice that equilibrium

39
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points arbitrarily close to the boundaries can be considered by reducing the value of €.

Assumption 5.1. For a given reachable target ys € Ys(Z), consider that there exists
a unique associated steady-state x5 = 0,(ys), us = 0u(ys), where 0,: Ys(Z) — R and

ou: Vs(Z) — R™ are Lipschitz continuous functions, such that:

ys = h(xs, ug). (5.4)

Remark 5.1. Notice that Assumption 5.1 is analogous to Assumption 3.1, with 0., 0y
assuming a similar role to g.,g,. Therefore, through the implicit function theorem [18],

Assumption 5.1 is satisfied if m = p and the following matriz is nonsingular

(A(xs,us)—]n B($57Us))
C(xs,us) D(xg,us) 7

where A, B, C' and D represent the linearized system (2.1) at (x,us), for all admissible
equilibrium points (zs,us) € Z4(Z).

5.2 Robust NMPC for Tracking

In this section, the NMPC algorithm for tracking is presented. The proposed
strategy also applies nominal predictions and tightened constraints. However, aiming to
increase the domain of attraction and avoid feasibility loss due to reference changes, an
artificial reference y, is considered as an additional variable in the optimization problem
[22]. Convergence to the actual reference y, is then ensured via the insertion of the term
Vo(ys — yi), which penalizes the difference between real and artificial references, to the
cost function.

Due to the presence of the artificial reference, it is necessary to extend the idea
of Robust Positive Invariant sets presented in Chapter 2 to the tracking case. where the

equilibrium point is any (x4, us) with y, = h(xs, us), rather than just the origin.

Definition 5.1 (Robust Positively Invariant set for tracking). Consider a set T' C R™*P
and a control law uy = ki(xy,ys). [ is a Robust Positively Invariant set for tracking for

system (2.1) subject to disturbances wy € W, if for all (x,ys) € ' and w € W, then
(f(xa Ht('ra ys)) + ways) el
Definition 5.1 means that once state and reference are inside the set I', the control

law x;: R — R™, with a fixed artificial reference, guarantees that the next state is also

in the set, regardless of the disturbance wy € W; (robust positively invariant property).

In practice, due to numerical restrictions of the optimization solver, in practical implementations e

cannot be arbitrarily small.
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Based on the current state x; and the desired setpoint y;, the NMPC solves the

optimal control problem P (xy,y:) defined as:

N-1
min ]z; L(@hpjie — s T(Vkijpes Thopjin) — Us) + Vi(Tronpe — 5, 9s) + Vo(ys — yt)
(5.5a)
s.t:
Thrjrife = Sr(Terjle: Vo), J € Zp,v-1, (5.5b)
(Tt jies Verjie) € Z2(3), € Zo,n-1y, (5.5¢)
Ts = 0:(Ys); Us = 0u(Ys), (5.5d)
(T Niks Ys) €T (5.5¢)
where V = (Vgjk, Ukt1jks - - - » Ukt N—1jk) and gy are respectively the virtual inputs and arti-

ficial reference, L, V; and Vp are respectively the stage, terminal and offset costs, Z,(j)
are the tightened constraints, recursively computed via Eq. (2.8) from disturbance prop-
agation sets S(j) which satisfy Condition 2.1, and T is the terminal set.

Notice that, due to the freedom provided by the artificial reference, the feasibility
of Pi(zg,y;) and, therefore, the domain of attraction Xy, is independent of y;. For a
given x, € Xy and y; € RP, v*(xy,y;) and yi(zg, y:) are respectively the virtual input
sequence and artificial reference that solve the MPC optimization problem Pk (xy,y:),
with V3 (zk,y:) the associated minimal cost. Based on the receding horizon policy, the

proposed NMPC control law is defined as follows:

U = K'r(xkyyt) = W(ZEk, UZ)a (56)
where v} is obtained from the solution of P% (xy,y;) at each sampling instant. Notice that
(5.5d) can alternatively be replaced by:

zs = f(xs,us),

ys = h(xs, us), (5.7)

being x, and u, additional optimization variables, thus eliminating the need for an explicit
knowledge of the functions g, (-) and o,(-) [22].
The stage cost L: R"™™ — R, the offset cost Vp: R? — R and the set of feasible

equilibria ); must satisfy the following assumptions:
Assumption 5.2.
(i) The stage cost function is positive definite and uniformly continuous, such that:

L(z,u) > ag([z]), (5.8a)
|L(z1,u1) — L(w2, u9)| < Aulflzn — 22|]) + AullJus — uzl]), (5.8b)
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where A\, and A, are K-functions and oy is a Kso-function.

(1) The set of feasible references Yy = {ys € RP: (0.(ys),ys) € I'} is a convex, compact,
non-empty subset of Ys(An), where Ay C Z(N) = {(z,nm(z,v)) € R™™: (x,v) €
Z,.(N)} is the N-step-ahead admissible set.

(i1i) The offset cost function is positive definite, uniformly continuous and strictly convez,

thus assuring that the minimazer

Yo = arg min Vo(ys — yt) (5.9)
Ys€V¢

is unique. Furthermore, for any y, € RP and ys € Y, we have

Vo(ys — ye) — Vo(ys — ye) = aol(llys — v2ll), (5.10)

where ap s a Koo -function.

Remark 5.2. In particular, quadratic stage and offset costs can be considered. For the
stage cost, L(x,u) = 2TQz + uT Ru is positive definite and uniformly continuous in Z for
any Q = 0 € R R » 0 R™™. For the offset cost, Vo(y) = y"Ty is positive definite,
strictly convex and uniformly continuous in Yy for any T = 0 € RP*P. Furthermore, (5.10)

is satisfied, as shown in Lemma B.3, Appendiz B.

The terminal control law v;: R"? — R™, terminal cost Vy: R"*” — R and termi-

nal set I' C R™™P where u,(z, ys) = m(x, vi(x, ys)), must satisfy the following assumptions:
Assumption 5.3.
(i) The terminal control law must satisfy ui(zs,ys) = us for all admissible equilibrium
points (]757“5) = (Qz(ys>> Qu(ys))a Ys € Ve

(i) The terminal set T' C Ay where Ay = {(z,y) € R" x V;: (z,u(x,y)) € An} is an
admissible robust positively invariant set for tracking subject to u = u.(z,ys) for any
w € S(N). That is, (z,ys) € I' C Ay = (f (2, w(x,ys)), ys) ® (S(N) x {0}) €T

(1it) The terminal cost function Vi(x— x4, ys) must be an uniformly continuous Lyapunov
function for the system xp1 = f(xg, w(zr,ys)), with constants b > 0,a > 1 € R
such that for all (x,ys) € I' we have:

0 < Vi(x —z4,ys) < bz — x4, (5.11a)
Vi(@1,9s) — Vi(za, ys)| < 0([|1 — 22]]), (5.11b)
Vf(f(l’, Ut(l', yS)) - $S7y5> - va(a7 — Ts, ys) S —L(l’ — Ts, Ut(ﬂ% ys) — Us), (511C)

where T3 = 0.(Ys), us = 0u(ys) and § is a K-function.
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Remark 5.3. In particular, a quadratic terminal cost Vi(x,ys) = 2TPx, P > 0 can be
considered, since it is uniformly continuous in Z and x7Px < \rp ||z, where Ay p is the
largest eigenvalue of P, thus Eq. (5.11a) is satisfied with b = Ay p and a = 2. Similarly
to the requlation case, also considering a linear terminal control law and quadratic stage
cost, Eq. (5.11c) can then be converted to a Linear Matriz Inequality (LMI) problem, as
detailed in Section 5.3.

Notice that these assumptions are similar to the ones presented in Chapter 2 and
related works [34, 22|, but extended to the NMPC problem with bounded disturbances
and piecewise constant references. Finally, the following mild additional assumptions are

included in order to ensure Input-to-State stability:
Assumption 5.4.

(1) There exist positive constants sg,cs > 0 € R such that

ao(s) > css®, Vs € RT, s < s. (5.12)

(i) The origin is an interior point of S(N), i.e. there exists €5 > 0 € R such that
|z|| < es = x € S(N).

Remark 5.4. Notice that since the constants sg,cs > 0 can be arbitrarily small, Assump-

ao(s)

tion 5.4(i) is equivalent to lim,_ o > 0. In particular, if quadratic terminal and offset
costs are used, a = 2 and, as shown in Lemma B.3, Appendix B, ap can be defined as
ap(s) = )\m7Ts2, where A\p, 1 is the smallest eigenvalue of T >~ 0. Therefore, Eq. (5.12)

can be trivially satisfied by making cs = A\ 1.

Remark 5.5. Since the origin is an interior point of W, Assumption 5.4(ii) is a conse-
quence of Condition 2.1 and the implicit function theorem if VI fr(x,v) is nonsingular for
a given (z,v) € Z:(N). Nonetheless, if the origin is not an interior point of S(N), which
in the zonotopic case is equivalent to S,(N) being degenerated ?, it suffices to consider a

modified disturbance propagation set S(N) = S(N) @ e,B™.

The main properties of this NMPC algorithm for tracking are presented in Lemma
5.1, and Theorem 5.1. They ensure recursive feasibility and Input-to-State Stability (ISS)
of system (2.1) subject to the NMPC control law (5.6).

Lemma 5.1 (Recursive Feasibility). Let Xy be the domain of attraction of the NMPC
controller (5.6). Then, the following properties hold:

2A zonotope Z = ¢ ® GBoZ C R™ is said to be degenerated if its generator matrix G € R™*™s is not

full line rank.
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(i) For any y; € R? and x, € Xy, the NMPC control law provided by Eq. (5.6), namely
U = Kp(Tg, Yt), is such that xpq = f(xg, ug) + wp € Xy, Yw, € W.

(i) Given ¥V*(zg,y) = (v, v],...,vN_1) and yX(xg,yr) = yi, then the virtual control
sequence V¢ = (v}, ..., Un_1, V(Trynik, ¥i)) and artificial reference yi = yi define a

feasible (candidate) solution of Py (2r11,7,), for any §, € R? and wy, € W.

Proof. Consider the optimal solution at k, \“f[khk EN—1]) Yiy, and the candidate solution
at k+ 1, v¢ = (UZH'k, . ,v,’:+N_1‘k,vt(xZ+N|k)), Yirt1 = Yep, Which provide the opti-
mal and candidate predictions given by xj, ., = fﬂ(x,jﬂ_l'k,v,’;ﬂ_”k) and @, =
fﬂ(ﬁzﬂ.fl‘kﬂ,U;ﬂ.f”kﬂ), respectively. Now, given xp1 = fr(xg, vf) + wg, with wy € W,
then from Condition 2.1, Thiikr1 € Thjik @S(j—1), j=1...N is ensured.

Moreover, due to the definition of the NMPC problem Py (xg, ), (x,tﬂ‘k, v;gﬂ.“g) €
Z:(j), Vj=1...N—Lland, from (z} vy, ¥:) € I C AN, (2, e ve(@hy v U2)) € Z2(N).
Hence, the following candidate condition holds for j =1... N:

($z+1+j|k+1avli+1+j|k+1) S (xz+1+j\k’vl:+l+j|k) ® (S(j7) x {0}) € Z:(4),

where for simplicity of notation vy = vi(2}, . ¥s) Was defined. For the terminal con-
straint, we use the fact that I" is a robust positively invariant set for tracking. Therefore,

(T nip: ¥s) € I guarantees that
(fr(@hnpp ve(@pynips 92)) +w,95) €T, Vw € S(N).

Since U§+N|k+1 = Ut<$Z+N|k7y:)= $2+1+N\k+1 S fw(xZ+N|k=Ut($Z+N\wy:>> ® S(N)

and thus (mzHJrN‘kH, yr) € I'. Therefore, v = ¥°, y, = y¢ define a feasible solution for

P4 (2k41,7,) and 251 € Xy. O

Remark 5.6. Notice that, given an admissible artificial reference ys € Vi, with vs =
vi(zs,ys) and x5 = 0,(ys), then the virtual control sequence v = (v, ..., vs) is a feasible
candidate for the problem P (xs,vy:). Therefore, the set of admissible equilibrium states
Xy ={x € R": © = 0,(ys), ys € Vi} is a subset of Xn. Moreover, feasibility is not lost
due to setpoint changes, because (i) ys is a free decision variable, and (ii) the constraints

of the optimization problem do not depend on y;.

Theorem 5.1 (Input-to-State Stability). Assume that Assumptions 5.1, 5.2, 5.3 and 5.4
hold. The system (2.1) subject to the NMPC' control law (5.6) is Input-to-State Stable
in Xy. That is, for any xo € Xy and constant setpoint y, € RP, with uy, = K.(Tg, ys),

w € W, Vk € N, the following inequality holds:

), (5.13)

le = 22l < B (o — 220, %) + (|| Wios

where y° is given as in (5.9), 2 = 0,(y°), and B(-) and y(-) are respectively a KL-function

and a K-function.
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Proof. Define W*(xg,y:) = Vi(zk, yt) — Vo(y? — yi), where Vo(y? — y;) is the optimal
constant value of the offset cost. The feasible candidate v¢ will be used to show that
W*(xg, ye) is an ISS-Lyapunov function for system (2.1) subject to the control law (5.6).
Being L, a Lipschitz constant for g, in V4, i.e. ||02(vs) — 02(Wa)|l < Lg l|1Y6 — Yall s YYa, yp €
Y, then:

W*(xp, ye) 2 L(xr — 2%, 7(@n, vy) — uly) + Vo(yir — ve) — Volys — ut)

>a(||lor — 254 ) + ao(l|ysr — v2]))
_1’

>ar(||lox — a7kl + ao(Ly " [Jaly — 22])
Now, defining the Koo-function oy (s) = min {v(s/2), o (L, *s/2) } and noticing that via

+ ot — 22 <

the triangular inequality ||z — 22| <

k
’H%$_x

g — T,

2 max{ ||z — Ty
W* (g, ye) Zaw (2||ax — 25, ||) + aw (2|2}, — 22))

), aw (2 [z, — 25|}

> max{aw (2 ||z, — 2,
=aw (max{2 H:Bk - x:kH ,2 Hx:k — x?H})
>ayy (||oe — 22)).

From Lemma B.4, W*(xy, ) < Vi(xr — 22,y°) < bllay — 22" if |Jop — 22| < &s.
Moreover, W*(z,y¢) is bounded in Xy from the continuity of the cost functions and
compactness of the constraints, and thus, from Lemma B.2, there exists b > 0 € R such
that

wllzr = 22ll) < W@, ye) < bllag —a2l|*, Vay, € Xy (5.14)

Now, the feasible candidate is used to define W¢(zg11, y¢) = V§ (241, yi) — Vo (yo —
Ye), with V¢ = (v, ..., v -y, ve(@, v Ya k) @and 45y = Y, as previously discussed. For
simplicity of notation, consider uy, ,, = ﬂ(xzﬂm,v,’;ﬂ‘k), J=0...N—=1 up i =
7T($Z+1+j|k+1’ Ug+1+j|k+1)v J=0..N—=1 u, e = ut($Z+N\kvy:,k) and ThyNpilk =
flxy, Nk Ukt N .). From the uniform continuity of the model, there exists a K-function
0.(+) such that szﬂ'lkﬂ - xzﬂ.‘kH < ol Y (||lwel]), j = 1...N + 1. Therefore, omitting

the dependence of the terminal cost on y, for presentation simplicity, we have:

‘L($§+j|k+1 - xg,k—i—l’ U2+j\k+1 - ug,k—i—l) - L($Z+j|k - 35:,1@:“7;4”'\1: - u:k)' < )\z(Uifl(HwkH)):
|Vf($Z+N+1|k+1 - xg,k-{—l) - Vf(xI:+N+1\k - x:k)' < 5(05(||wk||))7

for j =1...N. An upper bound for the candidate objective function can then be written:
N-1

* * * * * * *
N (Tt Ye) E $k+j|k = L Uik — Us,k) + L(%+N|k — Tk Uk Nk — Us,k)

N-1

+ Vi@ = 200) + D Aa(od(lwnl)) + v (0 (i)

J=0
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Now define AW = W(xpy1,y:) — W (g, vt) = Vi (Trs1,y:) — Vi (zk, y:). Hence, from
Assumption 5.3 (iii) and Assumption 5.2 (i), the following bound for AW can be estab-
lished:

AW < — L(xy, — x:,kzv U — U:k) + Vf(xZ+N+1\k 95:0 - Vf($Z+N\k - x:k)

+ L(Zhy vk = Top Ukg Nk — Usk) T Z Aa( (lwell)) + Av (o (lwil]))
7=0

IN

— L(xg, — 2%, up — ugy,) + 0(][wi]])
< —ap(lJer — 23, l) 4+ 0(]Jwkl]),

where 6(||wy|) = Z;V:Bl e (o2 (JJwg ) + Av (e (lwi]])) is a K-function. Then, due to the

optimality of the effective solution, the following cost difference is verified:
W (@s1, y0) = W@, ye) < —on(lloe — 254 + 0w l)- (5.15)

).

From Lemma B.5, defining @y, = az,004," a Koo-function, ap ||z, — 22||) < ap (|| — T
Therefore, from Eq. (5.15), we have

W (@psr, ye) = Wk, ye) < —ap([lax — 22l]) + 0([Jwrl)- (5.16)

Finally, from the inequalities (5.14) and (5.16), W*(z,y;) is an ISS-Lyapunov function
for the NMPC control system and, through Lemma B.1, Eq. (5.13) is satisfied. ]

5.3 Simplified Terminal Ingredients

In this section, the choice of terminal control law, cost and constraints satisfying the
assumptions presented in Section 5.2 is considered. A method to obtain a linear terminal
control law and associated quadratic terminal cost is presented. Then, the problem of
computing a polyhedral terminal set based on linear models is considered.

Consider for simplicity a quadratic stage cost L(z,u) = 2TQz 4 u' Ru, as presented
in Section 2.5, and let Vy(z,y,) = TPz and (u — us) = K;(x — xs) be the quadratic
terminal cost and linear terminal control law, respectively. The terminal control law can
be rewritten as u = wy(x,ys) = Kz + (us — Kyxs) = Kyx + 0, where 0(ys) = us — Kyxg
represents the offset due to the artificial reference. Notice that the conditions: u.(zs,ys) =
u, uniform continuity of V; in Z, and Vj(z) < Apas ||z||5, where Apas > 0 is the biggest
eigenvalue of P, are directly ensured for any K; € R™*™ and P > 0 € R™*".

Therefore, the choice of the pair (K, P), as in the regulation case, is based on
stabilizing the system zy,1 = f(zg, Kixy + 0), satisfying the decreasing cost assumption
(5.11c) for any admissible (z,ys) € Ay. Theorem 5.2 shows that the same Linear Matrix

Inequality presented in Theorem 2.2 for regulation can be applied to the tracking case.
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Theorem 5.2. Consider the nonlinear system (2.1), the terminal control law ui(x,ys) =
Kix + 0 and terminal cost Vi(x) = TPz, P > 0, and let A € "™, B € I"*™ be interval
matrices satisfying VIf(Ay) € A, VIf(Ay) € B.

If, for any Ay € A and By € B, we have

(Ar+ BK;)TP(Ay+ B/K;) — P+ (Q + K] RK;) = 0, (5.17)
then the decreasing cost assumption (5.11c) is satisfied for any (z,ys) € An.

Proof. This proof follows a similar argument to that of Theorem 2.2. Consider (xy,ys) €

AN, rs = 0.(ys) and 95 = gu(ys). Defining dxy = v — x5 and dxg1 = f(2h, w2k, ¥s)) — s,
noting that w;(zy, ys) — us = Koz, Eq. (5.11c) can be rewritten as

dxp 1 Poxyy — 0w Poxy < —ox(Q + K{RK,)dxy. (5.18)

Additionally, through the mean-value theorem, u;(xs, ys) = us and, from the definition of
Ay, (s, us), (g, u(xr, ys)) € An, there exist A, € A, B, € B such that

f(xka ut(xbys)) = f(xs,us) + Af(xk - xs) + Bf(ut<xk'7 ys) - us)
=Ts+ Agéxk + BgKt(SQZk.

Therefore, dxy11 = (Ay + ByK;)dxy and thus Eq. (5.11¢) is equivalent to

dxy Poxy  — 0w  Poxy + 62 (Q + K] RK,)dx), <0,
62} (A + ByK,)TP(Ay + ByKy))dwy, — Saf Poxy + 62(Q + K] RK,)dxy, <0,
SxL((Ag + BeK,)TP(Ag + BiKy) — P+ (Q + K] RK,))dxy, < 0,

which, based on the matrix inequality (5.17), is satisfied. O

Therefore, as discussed in Section 5.2 the pair of matrices (K, P) can be computed
from the vertices of A and B via LTV control methods.

The method for computing the terminal set is based on the iterative algorithm for
obtaining polyhedral RPI sets presented in Section 2.6 and exploits the partition method
proposed in [37].

First, a pair of matrices (K, P) satisfying the decreasing cost assumption (5.11c¢)

is obtained through Theorem 5.2. Then, the following augmented autonomous system is

Ehir = <x’““> - (f (x’“’K”’“+9’“)> = fal&), (5.19)

Ort1 O

considered

where £ = (x,0) € R™"™ is an augmented vector that represents the original state descrip-

tion and the auxiliary variable 0(y;) = us— Kxs. A desired convex set of feasible equilibria
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Vi C V(Ay) is chosen and partitioned into a collection of disjoint sets {J;, j =1...N,}
such that ), = U; V-

For each j = 1...N,, consider a polyhedral compact set ¥; C ¥ = {(z,0) €
R™™: (z, Kyx + 0) € Ax} such that (0.(vs),0(ys)) € V;, Vys € V;*. System (5.19) is
then linearized around an equilibrium point 7€ = (0,(y;), 0(y;)), defined by some y; € Y,
resulting in the linear system

0841 = Aj &k, (5.20)
where 66, = & — €. An extended disturbance set Wi, = (S(N) x {0}) @ W/, is then

amp ~

considered, where Wil bounds the deviation between nonlinear and linearized models, i.e.
0;(6) = ful€) — U6 + A;0€) € W), VEE ;. (5.21)

An admissible Robust Positively Invariant (RPI) set ®; C W, for the linearized sys-
tem (5.20), subject to disturbances wy € W

amp?

rithm presented in Section 2.6. By the definition of WY, &, is also a RPI set for the

nl’ J

is then obtained through the algo-

augmented nonlinear system (5.19) subject to wy € S(IN) x {0}. Therefore, for any
(z,y5) €Ty ={(z,ys) € R*"xY;: (x,0(ys)) € D;}, we have (f(z, Kx+6(ys))+w,ys) € T
for any w € S(N), and I'; is a Robust Positively Invariant Set for Tracking (TRPI set)
for system (2.1) with the terminal control law u,(z,ys) = K;(z — x,) + us.

Finally, a convex subset Y, C {y € Vi: (02(vs),ys) € U ;I'j} is considered and the
terminal set is defined by I' = {(z,ys) € R" x s (2,ys5) € U, I';}. The convexity of
is necessary in order to allow for transitions between the TRPI sets I'; without feasibility
loss. The condition I' C Ay is satisfied from the definition of ), and V¥, and the invariant

condition is a consequence of the each I'; being a TRPI set.

Remark 5.7. Considering compact polyhedral state and input constraints (Ay a polyhe-
dral set), a natural choice of V; is given by ¥; = {(x,0) e R"™: 0 € ©,, (v, Kyx+0) €
An}, where ©; 2 0(Y;) is a polyhedral set. It is advantageous to consider relaxed con-
straints on 6, in an attempt to have (04(ys),0(ys)) € ®;, and thus (0.(ys),ys) € I';, for
all ys € Y; *. However, the set ©; cannot be arbitrarily large, as discussed in [21, 30],
otherwise the set ®; may not be finitely determined (Remark 2.3). Furthermore, as dis-
cussed in Section 2.6, additional constraints on state or input can be included on VU, in

order to reduce the deviation between nonlinear and linearized models.

Remark 5.8. For simplicity, the same terminal control and cost matrices were considered

for every partition ;. Nonetheless, multiple pairs (? K;,7 P) can be defined, one for each

3Notice that (Qz(ys)7 9(3/5)) S ‘ij for all Ys € yj7 since (Qx(ys)7 Kth(ys) +0(ys)) = (Qw(ys)a «Qu(ys)) and
yj g ys (AN)
“Notice that if this condition is satisfied for all j = 1... N, it is possible to directly choose V; = V.
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j = 1...N,, with the TRPI sets being computed analogously. The terminal control law
and cost would then be given respectively by uy(x,ys) = Ki(ys)(z —xs) +us and Vi(x,ys) =
(v = 25)TP(ys)(x — xs), where (Ky(ys), P(ys)) = (K, P) for ys € Y.

These solutions were proposed in order to simplify the definition of the terminal
cost and set. Nonetheless, the recursive feasibility and ISS guarantees presented in Section
5.2 are general and other stabilizing laws, terminal costs and TRPI sets can be considered

in the proposed tracking NMPC algorithm.

Recapitulation

In this chapter, the robust NMPC presented in Chapter 2 was extended to fol-
low piece-wise constant references, maintaining robust constraint satisfaction, recursive

feasibility and input-to-state stability. In particular, the following topics were discussed:

e Equilibrium condition: The sets of admissible equilibrium points and reachable refer-
ences were defined and the conditions under which each desired output is associated

to a single steady-state were presented.

e Robust NMPC for tracking: The model predictive controller for tracking piece-
wise constant references was presented. An artificial reference was inserted in the
optimization problem to avoid feasibility loss during reference changes and the as-
sumptions presented in Chapter 2 were extended to the tracking case. Under these
modified assumptions, recursive feasibility and input-to-state stability of the closed-

loop system were proven.

e Simplified terminal ingredients: Practical methods for choosing a quadratic terminal
control law and polyhedral terminal robust positively invariant set, which satisfy the

necessary assumptions, were provided.



Chapter 6

Stochastic Disturbances and Chance

Constraints

In the previous chapters, NMPC control laws with constraints on state and input
were presented and robust constraint satisfaction was ensured. This means that the
system trajectory will satisfy the constraints for any disturbance realization. However, in
order to guarantee robust constraint satisfaction, the worst-case disturbance realizations
need to be considered, even if the probability of them actually occurring is remote, which
may be rather conservative.

In this section, the additive disturbances are seen as stochastic variables and chance
constraints, which allow for a predetermined level of admissible constraint violation, are
considered. This is referred in the literature as Stochastic Model Predictive Control
(SMPC) [34, 30] and avoids the conservativeness of always considering the worst-case
disturbance scenario.

This approach reveals a trade-off between domain of attraction and performance,
and admissible probability of constraint violation, where a larger domain of attraction
and lower optimal costs can be achieved as long as a higher chance of constraint violation
is allowed. In Section 6.1, chance constraints and their reformulation into one-step-ahead
deterministic constraints are presented, while Section 6.2 shows how they can be incorpo-
rated into the NMPC strategies presented in the previous chapters, maintaining recursive

feasibility and stability properties.

6.1 Chance Constraints

Consider system (2.1), where wy € W is a random variable with a given probability

distribution with finite support. Individual chance constraints can then be imposed on

50
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Zri+1, given the information available at k, as defined by
Pz < gjl >1—¢5, j=1...n., VkEN, (6.1)

where hi® € R1xn g € R and ; > 0 € R define the linear inequalities and allowable
probability of constraint violation for each chance constraint. Eq. (6.1) states that, given
the information available at k, i.e. x; and v, the probability that z,, satisfies the linear
constraint hi‘ryy1 < gi° is at least 1 — ;. Alternatively, ¢; is the maximum allowable
probability of constraint violation.

The individual chance constraints can be converted into a deterministic constraint
on the one-step-ahead prediction xyi1x = fr(zk,vx) as shown by Lemma 6.1, derived
from [34].

Lemma 6.1 (|34]). Consider system (2.1), the line vector h € R**", the scalars g € R,
and e >0 € R. Let 9 € R be such that Plhwy < ] > 1 — €. Then, we have

hape <g—7 = Plhagy <gl>1—¢, (6.2)
where Tp1k = fr(Tr, Vi) is known at the time-instant k.
Proof. We have 1 = Tjq1r + wi and thus
hw, < v = hxger < hagpr + Y.

Therefore, if hapi1x < g — Y0, then hwy < 7o implies hzpyr < g and Plhag < g] =
Plhwr <y >1—¢. O

Therefore, considering the chance constraint set given by
XC={r eR": hi’r < g —;, j=1...nc}, (6.3)

where 7 € R" satisfies P[hfwy, < 7] > 1 —¢;, j = 1...n,, then x4, € A implies
]P’[h;‘:xkﬂ < gjc] >1—¢5, 7=1...n,and the set X' can be used to incorporate the

chance constraints (6.1) into the NMPC optimization problem.

6.2 NMPC Algorithms with Chance Constraints

Similarly to the case with deterministic constraints, tightened constraints are con-
sidered in order to maintain recursive feasibility. Given the initial constraint X*(1) = X'
and disturbance propagation sets S(j) satisfying x4 4 1j641 — Trtjrae € S(J), j=1... N,

tightened chance constraint sets X' are iteratively given by:

Xe(j+1)=x°()esy), j=1...N—1 (6.4)
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Based on these sets, the following additional constraints, which implicitly ensure the

chance constraints (6.1), can be included in the NMPC optimization problems:
Th+jlk € ch(j), j=1...N—1. (65)

Remark 6.1. In order to calculate the disturbance propagation sets S(j), j =1,..., N, the
vector (xy,vy) should be bounded by a compact set. The constraint (zg,vy) € Z,, Vk € N
1 a natural choice, but the interval matrix J., and as a consequence the conservativeness
of 8(j), are potentially reduced from tighter constraints on (xy, vg).

If chance constraints are used, notice that vy € X“ & W for any k > 1, from
the restriction w1 € X applied in the previous sampling instant. Thus, given a set
X° D X @ W that satisfies xg € X° (the initial state is bounded by X°), J. can be
computed from the intersection Ay = Z, N (X° x R™). Notice that, with this remark, the
condition of compactness of Z can be softened, since only compactness of Aq is needed

(this allows, for example, cases where all state constraints are probabilistic).

In the following, for notation simplicity, the NMPC optimization problems Py (xy),
PN (g, fu.) and Pk (xg,y:) presented in Chapters 2, 3 and 5 with the addition of the
constraints (6.5) will be represented by Py (x), Pk (x, fix) and Pl (x,y:), respectively,
and the ensuing NMPC control laws by uy, = &(xy), ur, = K, (zk, i) and u, = R (2, Y1)
Finally, the concept of admissibility of the terminal set must be adapted in order

to consider the presence of chance constraints, as shown by the following assumption:

Assumption 6.1. The admissible N -step-ahead set Ay C R™™ must satisfy:
Ax C {(z,7(x,v)) € R""™: (z,v) € Z.(N),x € X*(N)}, (6.6)

where in the requlation case Xy C Vy = {x € R": (z,w(x)) € An} and in the tracking
case ' C Ay = {(z,y) € R" x Ys: (z,w(z,y)) € An}.

Now, Lemma 6.2 and Theorem 6.1 show that the recursive feasibility and stability
guarantees remain in the new stochastic NMPC control laws, introducing the additional

constraints (6.5) and Assumption 6.1.

Lemma 6.2 (Recursive Feasibility). The optimization problems Py(xy), Ph(xy, fix) and

]5}{,(@, yt), under the additional Assumption 6.1, are recursively feasible. In particular:

(i) If*(zx) = (U, ..., vk ) is a solution of Py (xy), then¥¢ = (vf, ..., vi_|, ve(Th s nip))

defines a feasible solution of P (xp41).

(ii) If¥*(xp) = (v, ..., vi_,) is a solution of Ph(xy, fir) then¥¢ = (v}, ... VN1 V(T vpp)

defines a feasible solution of pjl\j}(xk_t'_l’/lk_i_l).
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(iii) If ¥ (zp, y) = (U5, 0%, .. vi_y) and y*(ze, y) = vyt are a solution of Pl (xk,y:),
then ¥¢ = (v],...,VN_1, U(Trsnk, ¥s)) and yo = yi define a feasible solution of

Py (@41, 7)), for any 7, € RP.

Proof. The proof is divided into the three cases, and the same notations applied in the
proofs of Lemmas 2.1, 3.1 and 5.1 are used. Notice that, from the definition of the

disturbance propagation sets, we have:
Tipjort € T @SG —1), j=1...N (6.7)

(i) The constraints (zj, ., Vi yp) € 22(), 7 = 0...N =1, ap . € X“(j), j =
L. N—landap, v, € Xpimply that: (271410 Vi) € @i Vi) ©
{SGU) x0} € Zx(j), 5 =0...N—Tand a5, 1 € Tpyy jp DS() € XC0), j=
1...N —1, from (6.7) and the admissibility of Xy (X; C Vy).

For the terminal constraint, since xj 1, nypi1 = Jr(@hy v V(@) and 254w —
Trong € SN = 1), 2 v € Jr(@h s ve(Thy np)) © S(IV) and, through the
robust invariance of Xy, zj ., Ngt1 € X¢. Therefore, ¥v¢ is a feasible candidate

solution of Py (Tgs1)-

(i) Once again, from (6.7) and Xy C Vy, (2} Vigp) € 2x0), 7 = 0...N — 1,
Trogw € X€0), 7 =1...N —1and a}, y, € X imply (2} i Vhprgjp) €
Zo(j), j=0...N—Tland @, , ., € X(), j=1...N 1.

For the terminal constraint, zj ,,nyui1 = Sfo(@hynpprr: ve(@hnp)) + e €
S (@ v V(@5 np)) + et © S(IV). Hence, from the positive invariance of Xy,

x2+1+N\k+1 € Xy. Therefore, V¢ is a feasible candidate solution of ﬁ]‘é(xkﬂ, fkt1)-

k+ilk
1...N —1 and (szrN'k,yf;k) € I imply, (I2+1+j|k:+17vlf:+1+j|k+1) e Z.(j),
0...N—Tlandzf, 4y €X“0), j=1...N—1, from (6.7) and I' C Ay.

(iii) The constraints (7, vk, i) € Zx(4), 7 = 0...N =1, 2,5, € X“(j), j =
J

For the terminal constraint, i, nvyu =  fe(@hnvprr v@vp ¥s) €
fr (@ g 0Ty e Us)) @ S(IN) implies (25,1, yjpyr,Ys) € T, since I is a robust
positive invariant set for tracking. Therefore, v¢, y¢ = y;, define a feasible candi-

date solution of p]@(xkﬂ,@t), for any 7, € RP.
]

Theorem 6.1 (Input-to-State Stability). The stochastic NMPC' control laws uy, = R(zy),

up, = Ryu(zk, ;) and uy = Ry (zk, yi) are Input-to-State Stable. In particular:

(1) System (2.1) subject to the NMPC control law uy = R(xy) satisfies:

lzill < Blllzoll , &) + (|| wio [])- (6.8)
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(1t) System (2.1) subject to the NMPC' control law uy = R, (zk, fu,) satisfies:
Jor =t < 820 — aoll )+ 2 (winalD, 09

(i1i) System (2.1) subject to the NMPC' control law uy = R.(Tg,y:), where y, € R is a

constant reference, satisfies:
o — 22l < B (lzo — 2]l . &) + ([ wou ), (6.10)

where B and ~ represent appropriate KL- and IC-functions, respectively.

Proof. Analogous to the proofs of Theorems 2.1, 3.1 and 5.1, using Lemma 6.2 to en-
sure feasibility of the one-step-ahead candidate solution and Lemma B.6 to guarantee

admissibility of the terminal control law inside the terminal set. O

Recapitulation

In this chapter, it was shown how to incorporate chance constraints into the pre-
dictive controllers previously presented, maintaining the recursive feasibility and stability

guarantees. In particular, the following topics were discussed:

e Chance constraints: Chance state constraints, in the form of a minimal probability
of constraint satisfaction by the next state given current information, were stated.
It was also shown how this chance constraint on x;,; can be reformulated as a

deterministic constraint on the one-step-ahead prediction j.qq|x.

e NMPC algorithms with chance constraints: The chance state constraints were then
tightened via the disturbance propagation sets and incorporated into the controller
design, such as to maintain the recursive feasibility and input-to-state stability guar-

antees.



Chapter 7

Case Studies

In this chapter, simulations are presented in order to validate the performance of
the proposed NMPC algorithms. The first case study applies the robust NMPC with
disturbance propagation via zonotopes presented in Chapter 2 to the DC-DC Buck-Boost
converter [17, 34|, comparing the zonotopic method of disturbance propagation proposed
to the one based on Lipschitz constants. The second case study considers the robust
NMPC for tracking presented in Chapter 5, with chance state constraints (Chapter 6).
Piece-wise constant reference tracking and probability of constraint violation under the
specified maximum are verified.

The next case studies are based on the CSTR (Continually Stirred Tank Reactor)
benchmark, which consists of a tank used to perform an exothermic irreversible reaction
[23, 24]. First, reference correction and the constant disturbance model are incorporated
in the controller project, as proposed in Chapter 3, demonstrating that regulation without
offset can then be achieved in the presence of constant disturbances. Finally, the tracking
NMPC is also implemented in this case study, showing the importance of the artificial
reference in preventing feasibility loss during reference changes and the increased domain
of attraction provided by this strategy.

All simulations were made in an i7, 2.4 GHz, 16 GB RAM, DELL computer.

7.1 Buck-Boost Converter

The discrete-time nonlinear model of the Buck-Boost converter, with the equilib-

rium translated to the origin, can be represented by (2.1), with

T1 + oz + (B1 — Y2x2) U
f(:[/'7 u) - b
—oxy + azry + (B2 + Mxr) u

h(z,u) = xq, (7.1)

95
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where z1, x5 and w represent, respectively, the inductor current, output tension and
duty-cycle input of the converter, translated in relation to an equilibrium point. For a
sampling period Ty, = 0.65ms, circuit parameters R = 85¢), C' = 2.2m(C, L = 4.2mH,
Vin = 15V, and the equilibrium point defined by V,,; = —16V, the model parameters are:
a; = 0.074880 71, ap = 0.14309, g = 0.9965, B; = 4.798A, B, = 0.1149V, v, = 0.2955Q

and 7, = 0.15480Q~L. The following state and input constraints were considered:

X ={zreR* |z], <3},
U={ueR: |ul <0.3}, (7.2)

and the system is subject to additive disturbances limited by the box W = {w €
R?: |lwl|l,, < 0.04}.

7.1.1 Regulation

In this section, the Buck-Boost system is used in order to compare the disturbance
propagation strategies based on zonotopes and lipschitz constants, and the corresponding
NMPC strategies with constraint tightening.

Through the algorithm proposed in Appendix A, for this particular case we have
K, = (0 0), with associated Lipschitz constant L, = 1.228, and thus u; = v, was
directly applied.! For the NMPC design parameters, a prediction horizon of N = 4
and, following the simplifying assumptions of Section 2.5, a cost function L,(z,v) =
2TQx + uTRu, with Q = I and R = 1, were chosen. The stabilizing terminal control

law and associated terminal cost can then be obtained from Theorem 2.2 via the method
3.398 —5.079

~5.079 27.67 )

Initially, in order to evaluate the effect of the zonotopic approach in conservatism

proposed in [15], resulting in K; = <—O.2534 0.3150) and P =

reduction of the disturbance propagation sets, the sets S(j) calculated via the zonotopic
method (Property 4.1) and via Lipschitz constants (4.1) are compared.

For comparison purposes and in order to verify the Condition 2.1 satisfaction,
nominal trajectories of system (7.1), with u = K,z = 0, were simulated for a grid of
points in the set o & W, where z is a point in X’ such that the ensuing trajectories
satisfy state and input constraints. The result is shown in Figure 7.1.

As expected, both the zonotopes xjjo @ S.(j) and the boxes x;0 ® S;(j) contain
the nominal trajectories of all points in zo @)WV (Condition 2.1). The sets S,(j), however,

are contained (Corollary 4.1) and are considerably smaller than the S;(7), specially for

IThe prediction feedback matrix K, = 0 because in this case the interval matrix J,,, which depends on
the states, has a considerably larger radius than J,, which depends on the input. Therefore, to minimize

the Lipschitz constant, it is better for this particular system to directly make J, = J,.
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Figure 7.1: Comparison of the sets S(j) via zonotopic and Lipschitz methods. The sets
S.(j) are represented by solid lines, while the S;(j) by dashed lines.

larger values of j (longer prediction horizons). Table 7.1 compares the sizes of the sets,
represented by their areas, and the computation time necessary for their calculation (¢.).2
Notice that the zonotopic approach offers less conservative limits for these trajectories, still

with a low computational cost?, and thus better estimates the disturbance propagation.

Table 7.1: Disturbance Propagation Sets Comparison (Buck-Boost).

Size(x1073 V' A)/Comp. Cost(us) | S(0) | S(1) | S(2) | SB3) | S(4) | t.
Zonotopic Method 6.40 | 7.42 | 877 | 10.5 | 12.7 | 244
Lipschitz Method 6.40 | 9.65 | 14.6 | 22.0 | 33.1 || 55

Robust model predictive controllers were then implemented via the method de-
scribed in Chapter 2, one applying the zonotopes S.(j) and other the boxes S;(j) for
the constraint tightening. Figure 7.2 compares the terminal sets X, obtained via the
method proposed in Section 2.6, and the domains of attraction of each controller. The
closed-loop trajectories of both controllers were also simulated from the initial state

ro = (—1.5,-3), with simulation time N, = 40 and the same sequence of aleatory

2For a better comparison of computational costs, the cost associated to the computation of the interval

matrices J, and J, and the feedback matrix K, which is identical for both methods, is not considered.
3It is worth noting that, since the sets S(j) are computed offline, the online computational cost of

solving the NMPC optimization problem is the same for both strategies.
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Figure 7.2: Comparison of terminal sets, domains of attraction and trajectories of the
predictive controllers. Once again, results related to the zonotopic and Lipschitz methods

are represented by solid and dashed lines, respectively.

disturbances w,

vim—1] € Whsim 4

In summary, the proposed NMPC strategy is capable of reducing the conservatism
in the computation of the tighter constraints through a zonotopic representation with
low computational cost, such that the domain of attraction of the resulting controller is

increased.

7.1.2 Chance Constraints

In this section, the Buck-Boost case study is used to illustrate the properties of
the robust NMPC controller for tracking presented in Chapter 5 in the presence of chance
constraints (Chapter 6).

The deterministic state constraints z, € X = {z € R*: |z| < 3} are thus

replaced by individual chance constraints, defined by:

] > 0.8, Pllzr1]2 > =3] > 0.8. (7.3)

The additive disturbances w, € W = {w € R?: |Jw|_ < 0.04} are derived from

4The sequence of disturbances has an uniform distribution on W and was generated by the Mersenne

Twister with unitary seed.
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a truncated normal distribution A/(0,0.0227) and, as proposed in Remark 6.1, an outer
bound on zg, given by X° = {zx € R?: ||z||_ < 3.2}, was considered for the computation
of the disturbance propagation sets S(7).

Again, the algorithm proposed in Appendix A results in K, = (() O). For the
NMPC design parameters, a prediction horizon of N = 4 and quadratic stage and offset
costs were chosen, with L(z,u) = 2TQz + u"Ru, Q = I, R = 1, and Vp(y) = y™Ty,
T = 1000. The terminal control law v = us + Ki(z — z,) and terminal cost Vi(z,y,) =
3.398 —5.079

2T Px, with K; = (—0.2534 0.3150) and P =
—5.079 27.67

), were obtained from

Theorem 5.2 via the method proposed in [15].

For the computation of the TRPI set, the desired feasible equilibria set V= {y €
R: — 2 <y < 2} was partitioned into the disjoint sets: Yy = [—2, —1.5[, Vo = [~1.5,0],
Y5 =1[0,1.5] and Yy = [1.5,2[. From these partitions, four TRPI sets I'; were computed,
as proposed in Section 5.3, satisfying (0,(ys),vys) € I';, Vys € V;, j = 1...4. Finally,
Y, = ), was chosen, with the terminal set given by I' = ;T

The closed loop system was then simulated with piece-wise constant reference
Yk = 2,Vk < 40, y,,, = —2,Vk > 40 and initial state o = (—3.2,—3.2), for 300
disturbance realizations. The state-space trajectories, input and output responses of the
first 20 simulations are shown in Figure 7.3. Notice that, as expected, the trajectories are
steered to RPI sets around x¢. Furthermore, in order to evaluate the effect of the individual
chance constraints and verify that the defined admissible constraint violation probabilities
are indeed satisfied, the Empirical Cumulative Distribution Functions (ECDFs) of [za.5]s
and [743.44]1 ® are shown in Figure 7.4. Notice that in both cases a probability of constraint
violation under 20% was achieved (more than 80% of the values obtained satisfied the
restrictions), and thus the individual chance constraints (7.3) are satisfied.

This result is expected, being similar to the ones obtained in the linear and regu-
lation cases [34, 33|. However, to the best of the author’s knowledge, there are no similar
results which apply chance constraints to the tracking NMPC problem with an artificial

reference.

5[@a:p]1 refers to the first coordinates of z,, . .., zy, for every realization
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(a) (b)

Figure 7.3: (a) Phase-plane evolution of the closed-loop NMPC control system for 20
disturbance realizations (the dashed line represents the equilibrium states X; = 0,(J4)).
(b) Input and Output time responses of the closed-loop NMPC control system for 20

disturbance realizations.

7.2 CSTR

The following nonlinear continuous-time model describes the CSTR (Continually

Stirred Tank Reactor) system:

Calt) = H(Cag = Calt) — Foe (1),
T(t) = LTy~ T(0) + _ﬁ;Hr Foe T Cy (1)
UA
+ g 0 = T(0), (7.4)

where the concentration of product A in the tank C4(t) and the reaction temperature
T(t) are the state variables, with the cooling temperature T,(t) as the control input. The
reaction temperature is considered as the controlled output and the model parameters
are: p = 1000g/¢, ko = 7.2 x 10"°min=, UA = 5 x 10*J/(minK), T, = 8750K, —AH, =
5 x 10%J/mol, C, = 0.239J/(gK), V = 100¢, g = 100{/min, T; = 350K and Ca; =
1.0mol /L.

The states and input are translated and scaled in order to simplify calculations and
position the equilibrium point defined by C% = 0.5mol/¢, T° = 350K and T = 300K in
the origin as follows:

Ca(t) —0.5
0.05

u(t) :%8300_

T(t) — 350

(L’Q(t) =,

z1(t) = 5

(7.5)
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Figure 7.4: Empirical Cumulative Distribution Functions of [za:5]1 and [r43.44]1 obtained

from 300 simulations.

Therefore, the discrete-time nonlinear system given by (7.6) is considered.

Tpr1 = fosTr(Tr, uk) + W,
ve=(0 1)z, (7.6)

where fosrr: R? — R? is obtained via Euler discretization of system (7.4), with time
interval Ty = 0.03 min. The following constraints are considered: 0.1mol/l < Cy(t) <
0.9mol /¢, 340K < T'(t) < 360K and 260K < T.(t) < 340K, which are converted by (7.5)

to the following state and input constraint sets:

X ={r cR?: |11| <8, |ra] <5},
U={uekR:|ul <2} (7.7)
For the simulation of the tracking NMPC, additive disturbances limited by the box
W = {w € R*: |Jw|_ < 0.1} are considered, while for the presentation of the constant
disturbance attenuation method a smaller disturbance set W = {w € R?: |Jw|_ < 0.05}

is assumed, due to the more conservative disturbance propagation associated with the

incorporation of the mean-value disturbance estimates into the prediction.

7.2.1 Constant Disturbance Attenuation

In this Section, the CSTR system is used in order to illustrate the NMPC algorithm

with constant disturbance attenuation presented in Chapter 3 and compare it to the
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original controller of Chapter 2, showing its benefits and drawbacks.

Regulation to the equilibrium defined by C% = 0.5mol/¢, T° = 350K and T? =
300K, translated to the origin, is considered, and the mean-value estimates ji; are com-
puted via a low-pass first order filter with pole a = 0.9 and unitary gain (F'(z) = %)
The auxiliary sets W, M and DM are obtained from W = {w € R?: |jw| < 0.05}
and the filter transfer function F'(z) as detailed in Section 3.2. Notice that an increase
in the value of a € (0, 1) results in a reduction of the bandwidth and the set DM, how-
ever increases the settling time. Therefore, a trade-off between the convergence rate of
the filtered estimation and smoothness of the target and prediction model correction is
observed.

Through the algorithm proposed in Appendix A, the feedback prediction matrix K,
is given by K, = (—0.3193 —2.119) , with an associated infinity-norm Lipschitz constant

L, = 1.102. For the controller design, a prediction horizon of N = 4 and a quadratic
0.1 0

stage-cost L. (z,v) = 2TQx + uTRu, with Q) = 0 . and R = 5, were chosen. The
terminal control law and cost were obtained from Theorem 2.2 via the method proposed
28.30 1.730
in [15], resulting in K; = (—0.3590 —2.010) and P = :
1.730 43.75

The disturbance propagation sets S(7) obtained via the zonotopic and Lipschitz
methods, with and without the inclusion of the constant disturbance model in the pre-
diction, were evaluated, with the results presented in Figure 7.5 and Table 7.2. No-
tice that the zonotopic methods are once again less conservative than the Lipschitz ones
(89(4) € 8°(4), S¥(4),S¥(j) € S'(4)). In fact, in one direction the zonotopic methods
are even able to reduce the size of the S(j), while the S;(j) needs to increase by L, in all

directions.

Table 7.2: Disturbance Propagation Sets Comparison (CSTR).

Size(x1073 Kmol/l)/Comp. Cost(us) | S(0) | S(1) | S(2) | S(3) | S4) | t.

S2(7) 10.0 | 5.71 | 3.84 | 3.07 | 2.74 | 176
SP() 10.0 | 12.1 | 14.7 | 17.9 | 21.7 || 50
SE(J) 40.0 | 29.8 | 26.4 | 26.6 | 28.5 | 450
SE() 40.0 | 29.8 | 26.0 | 26.0 | 27.6 | 605
SH(j) 40.0 | 57.8 | 81.1 | 111.4 | 150.2 | 71

The sets S*(j), SI(j) and S"(j) are in general larger than the S%(j) and SP(4).
This, however, is due to fact that the inclusion of the constant disturbance model requires

the consideration of any fix, {11 € M, fyr1 — jixp = DMPC. Therefore, the NMPC with

6Notice that the sets S#(j), S (j) and S!'(j) could be reduced via artificially limiting M and DM.
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constant disturbance attenuation presents larger disturbance propagation sets and, as
a consequence, a reduced domain of attraction. This is nonetheless necessary in order
to guarantee robust constraint satisfaction and recursive feasibility despite the online
actualization of the prediction model.

Furthermore, as shown by Table 7.2, the sets S_,’g”( j) are slightly less conservative
than the S#(j). This is in line with the discussion of Section 4.2 which led to the proposal
of the alternative sets S_ﬁ(j), i.e. the conservatism present in considering potentially
different Afi(j) € DM for each disturbance propagation step. However, since the sets
SH(j) and S_ﬁ(]) only differ in respect to the propagation of DM, which tends to be
considerably smaller than W, the difference is quite small.”

Finally, based on the zonotopic sets S%(j) and S¥(j), NMPC controllers with
and without constant disturbance attenuation were projected as described in Chapters
2 and 3. The controller responses were then simulated, with initial state xq = (3,—3),
simulation time N, = 60 and an additive disturbance consisting of a mean-value of
po = (0.03,—0.02) added to a random zero-mean exponentially decreasing wy (Figure
7.6). The closed loop responses are compared in Figure 7.7, while Table 7.3 presents the
steady-state offset, Integral Absolute Error (IAE) and mean online computation time (t.)
of each controller.

As previously discussed, the BIBO low-pass filter is able to attenuate high-frequency
variation such that the filtered disturbance converges to the constant steady-state value
almost monotonically. This effect can be verified from the concentration target correc-
tion depicted in Figure 7.7. It should be remarked that the target correction is derived
directly from the estimated disturbance. In this simulation, despite the noise effect, a
smooth target correction is observed with respect to the concentration, which is a direct
consequence of the high-frequency attenuation verified from the filtered estimation.

Notice that without constant disturbance attenuation the states tend to a disturbed
equilibrium and the output is not regulated to the desired set-point. The algorithm
proposed in Chapter 3, however, steers the states to the modified steady-state target
9z (110), in such a way that limy_,o, T'(k) = 350 as desired, despite the constant disturbance.

Table 7.3: Performance Comparison - Constant Disturbance Attenuation.

Measurement | Offset (K) | IAE(K) | t.(ms)
Without CDA 0.14 33.0 121
With CDA 0 29.19 172

"This small difference can be seen from the similar areas shown in Table 7.2. Furthermore, the two

sets are barely distinguishable in Figure 7.5.
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Figure 7.6: Sequence of disturbances w(k), with associated mean-value estimates fi(k).

Notice that the IAF is higher on the case without constant disturbance attenuation,
and would in fact be unbounded for longer simulation times. There was a moderate
increase on the computation time, although it is worth noting that this increase is due
to the disturbance filtration and corrected steady-state calculation. The optimization
problem, main source of computational stress (specially in more complex systems), has

the same number of variables and constraints in both cases.

7.2.2 Tracking

In this Section, the robust NMPC algorithm for tracking presented in Chapter 5 is
applied to the CSTR system, in order to validate the proposed controller and verify the
influence of the artificial reference.

The matrix K, = (—0.3193 —2.119) is obtained once again by the algorithm
proposed in Appendix A, in order to mitigate the disturbance propagation. For the

controller parameters, a prediction horizon of N = 4, with quadratic stage and offset costs,

0.1 0
as proposed in Remark 5.2, were chosen, with ) = 0 1) R =5 and T = 1000. A

linear terminal control law and quadratic terminal cost were then obtained by the method

. . .. 28.30 1.730
proposed in Section 5.3, resulting in K; = (—0,3590 —2,010) and P = .

1.730 43.75
A terminal TRPI set was then computed as proposed in Section 5.3 from the desired

set of feasible equilibria ), = {y € R: —4 <y < 4}, which was partitioned into the
following disjoint sets: Yy = [—4, =3[, Vo = [-3, =2[, V5 = [-2,0[, V4 = [0,2[, V5 = [2, 3]
and Vs = [3,4]. For illustration purposes, the projections on the phase plane of the six
TRPI sets, I';, 7 = 1...6, obtained, as well as their corresponding feasible equilibria
0.(Y;), are presented in Figure 7.8. Since in this case (0,(ys),ys) € I';, Vys € V; was



66

280 | | 1 1 | ]
0 10 20 30 40 50 60
k
07
Target == = = Corrected Target ===Resp. with CDA == =Resp. without CDA
Q 0.65
‘o
E 06F
©
O 055+
o e S S ==~
0.5 bmnemm =t T | - . . .
0 10 20 30 40 50 60
k
e
S — BT S W
=
=
344 | +  Target ;‘L--Corracted Target ====Resp. with CDA == =Resp. without CDH
0 1 20 30 40 50 60
k
351
3505~ o
3 =2 e
| ey — = e e
3495 , 4 . 4 . ‘ L
20 25 30 35 40 45 50 55 60
k
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67

achieved through relaxed constraints on 6 (Remark 5.7), V; = Y, was chosen, with the

terminal set given directly by I' = J; I';.

1r 4
< 0F
-1 '/\\ 1—\3
al 2
4l
P . Ty : . . . :
-8 -6 -4 -2 0 2 4 6 8

Figure 7.8: Projections on the phase plane of the TRPI sets I';. The terminal set is given
by the union I' = (J; T';.

The closed loop system with the NMPC control law (5.6) was then simulated
with a piecewise constant reference for the nominal case and with a random sequence of
disturbances wy € W 8, with the results given in Figures 7.9 and 7.10. Notice that in
the nominal case the output converges asymptotically to the optimal admissible target y?
(Y2 =y, in case of yp € [—4,4] = W, y? =4 if y, > 4 and y? = —4 if y; < —4), while in
the presence of disturbances the state is steered to a RPI region around x?.

The system was also simulated for other values of offset cost (7' = 20 and T' = 10*),
in order to evaluate its influence on performance. The resulting output and artificial
reference responses are shown in Figure 7.11. Notice that the transient response of the
artificial reference with respect to the optimal target y;, — y¢ becomes slower with a
smaller offset cost weighting, as T" = 20, so that a longer overall output settling time is
observed. If a sufficiently large T is used, as T = 10*, the difference between the artificial
and the the optimal target becomes negligible as soon as the optimal target provides a
feasible solution for the optimization problem. This fast artificial target response comes

from the relative impact of the offset cost with respect to the overall cost function. Indeed,

8The sequence of disturbances has an uniform distribution on W and was generated by the Mersenne

Twister with unitary seed.
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for an already sufficiently large offset cost, further increases on T have little influence on
the controller response since, if y; ,, = yg is feasible, y; ; can be considered as virtually equal
to y¢ from a numerical approximation perspective. In this case, for example, 7" = 1000
already provides approximately the same response as T = 10 or any other 7' > 10* (or
T — 00).

Finally, in order to illustrate the usefulness of the artificial reference, the NMPC for
tracking was compared with a similar controller without the artificial reference (making
Ys = Y), which is equivalent to considering a NMPC for regulation translated to the
reference ;. Notice that in this case the feasibility of the optimization problem, and
thus the domain of attraction, depends on the reference y;. Figure 7.12 compares the
domain of attraction of the NMPC for tracking with the domains of attraction for the
regulation case, for y; = —3 and 1, = 3.9 As expected, due to the freedom provided by the
artificial reference, the domain of attraction of the tracking NMPC contains the others.
Furthermore, while in the tracking case any feasible equilibria is inside the domain of
attraction, this is not the case without the artificial reference, where feasibility can be

lost due to reference change (for example from y, = —3 to y; = 3).

Recapitulation

In this chapter, the robust NMPC algorithms were applied in simulation to the
DC-DC Buck-Boost converter and CSTR benchmarks in order to validate and compare

the proposed approaches. In particular, the following simulations were made:

e NMPC for regulation of the Buck-Boost converter: The NMPC for regulation pre-
sented in Chapter 2, with zonotopic disturbance propagation sets (Chapter 4), was
applied in simulation to the Buck-Boost case-study. The zonotopic method was
shown to be less conservative than the one based on Lipschitz constants, providing

smaller disturbance propagation sets, and thus a greater domain of attraction.

e Stochastic NMPC of the Buck-Boost converter: The NMPC for tracking proposed
in Chapter 5, with the incorporation of chance state constraints (Chapter 6), was
applied in simulation to the Buck-Boost converter. The states were still steered to
a neighborhood of the desired target in the presence of chance constraints (input-
to-state stability), and, through 300 disturbance realizations, it was shown that the

minimal probability of constraint satisfaction was achieved.

9The domains of attraction were estimated by verifying feasibility of a grid of points via the barrier
(phase I) method [36]
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e NMPC for regulation without offset of the CSTR system: The NMPC with con-
stant disturbance attenuation proposed in Chapter 3 was applied in simulation to
the CSTR system. The process of estimating the disturbance mean-value and com-
puting the disturbance propagation sets, taking into consideration the incorporation
of a constant disturbance model in the prediction, were discussed. Regulation with-
out steady-state offset, in the presence of disturbances with non-zero means, was

achieved.

e NMPC for tracking of the CSTR system: The NMPC for tracking piece-wise con-
stant references proposed in Chapter 5 was applied to the CSTR system. Recursive
feasibility was observed and the controller steered the output to the neighborhood
of the optimal admissible reference (input-to-state stability). The importance of the
artificial reference was illustrated by showing the increase in the domain of attrac-
tion associated with it, and the effect of the offset cost weighting on the convergence
of the artificial reference to its optimal value, and thus on the controller transient

response, was analysed.
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Figure 7.10: State-Space response of the NMPC closed loop system for the nominal
(zN(k)) and disturbed (z(k)) cases.
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Figure 7.11: Comparison of the closed-loop responses for 7' = 20 and 7' = 10*.
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Figure 7.12: Domains of attraction for the tracking NMPC (Xy) and regulation NMPC
for y; = =3 and y; = 3 (Xy?(—3) and X7(3), respectively).



Chapter 8
Conclusion

This project presented robust Nonlinear Model Predictive Control (NMPC) strate-
gies, using nominal predictions and constraint tightening in order to ensure recursive fea-
sibility and robust constraint satisfaction. Furthermore, Input-to-State Stability (ISS) of
the proposed controllers is guaranteed via ISS-Lyapunov analysis. The tightened con-
straints were based on zonotopic disturbance propagation sets, computed via mean-value
zonotopic extension [1], which were shown to be less conservative than previous methods.

The robust NMPC for regulation [34, 19] was also adapted via the incorporation
of constant disturbance estimations into the prediction model, in order to avoid offset in
the presence of constant disturbances. The tracking NMPC problem was also tackled,
extending the nominal result of [22] to the robust case. Furthermore, the incorporation
of chance constraints [34] into the proposed control strategies, maintaining feasibility and
stability guarantees, was considered, allowing a certain degree of admissible constraint
violation to be specified in order to improve performance and augment the domain of
attraction. Finally, the proposed controllers were applied to simulation Buck-Boost and
CSTR (Continually Stirred Tank Reactor) case studies, in order to validate and compare
the proposed approaches.

Further research could: (i) seek less conservative methods to compute Robust
Positively Invariant (RPI) sets for nonlinear systems, (ii) study the extension of other
feasibility guarantee methods, such as equality terminal constraints, to the robust case,
(iii) combine the controllers of Chapters 3 and 5 for offset-free tracking, (iv) Consider the
robust NMPC project without direct knowledge of all states, via output feedback or state
estimation, and (v) Study the application of NMPC strategies for time-delay systems.
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Appendix A

Complementary Algorithms

A.1 Pontryagin Difference of Polytope and Zonotope

In this section, an algorithm for the computation of the Pontryagin difference of
a polytope P and a zonotope Z (P & Z) is presented [2, Lemma 6.5|. This is useful,
for example, for the constraint tightening process in the case of zonotopic disturbance
propagation sets and polyhedral constraints.

First, consider a halfspace H = {z € R™: hTx < ro}, where h € R", rq € R, and
a set Z C R™. Notice that if we define 7y € R as 7y = max,cz h7z, then the Pontryagin
difference H © Z is given by:

HeZ={zxeR": hlx <ry—y}. (A1)

Considering Z = ¢ ® GB.Z, 7o can be algebraically calculated as:

g

Yo = max hT(c+ GE) = hTe+ Y |ai, (A2)
ceBd

i=1

where a = hTG. Therefore, given a polytope P = {x € R": Hx <r}, H € R™*" r € R™,
which can be seen as the intersection of halfspaces H; = {x € R*: H;. .« < r;}, j =

1...m!', and a zonotope Z = ¢ ® GB5, the Pontryagin difference P © Z is given by:
PoZ={xeR": Hr<r—n~}, (A.3)

where v € R™ is a vector defined by v; = H; . ¢+ >_:% |A;j|, with A = HG. Notice that
this operation results in another polytope, does not require any optimization and has a

negligible computational cost.

1Hj,; is the j-th row of H, i.e. H;. = (hj1,hj2,. ., hjn).
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A.2 Choice of Feedback Matrix KX,

It is presented here a procedure for choosing the feedback matrix K, with the objec-
tive of reducing the disturbance propagation sets S.(j)?. Considering Theorem 4.3, a way
of reducing the sets S.(j) is by minimizing the Lipschitz constant L, = maxyej, || /]|

From (4.6), being A = J, e B = J,, previously computed by means of interval

arithmetic, we have

mid(J,) = mid(A) + mid(B)K, = M, + M,K,,
rad(J,) = rad(A) + rad(B)|K,| = R, + Ry|K,|, (A.4)

and the Lipschitz constant L, is given by

L, = max Z(|mz’d(Jﬂ)ij\ + rad(Jx)ij)

7=1
= miax Z(|(Ma + MbKv)ij‘ + (Ra + Rb’Ksz]) (A5)
7=1

Therefore, the matrix K, that minimizes L, can be obtained from the solution of

the following optimization problem:

Kby |
P> |M, + MyK,| + (Ras + Rp| K,|)
5.4 ) (A.6)
Y>3, Py, i=1...n
which can be converted into the linear program:
min vy
Ky, Ky, Py
Fv 2 Kv: Fv 2 _Kv
P> (M, + MyK,) + (R, + RyK,)
s.a: _ (A7)
P> —(M,+ MK,) + (R, + RyK,)
v > Z?:lpijv 1=1...n

with n? + 2nm + 1 variables and 2n? + 2nm + n restrictions.

A.3 Zonotopic Order Reduction

In this section, an algorithm for reducing the number of generators of a zonotope,

proposed in [31], is presented. First, notice that only a method to reduce the number of

2For simplicity of notation, S.(j) is used here to represent zonotopic disturbance propagation sets

obtained from any of the proposed methods (Properties 4.1, 4.2 or 4.3).
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generators by 1 is needed, with further reductions being possible by recursive applications
of this algorithm. We can also consider, without loss of generality, centered zonotopes.
Therefore, given a zonotope Z = GBL C R™, we want to find a zonotope Z =
GB (ideally the smallest possible) such that Z C Z. The first step consists on reducing
G via Gauss-Jordan elimination with full pivoting to row echelon form? (I R), where
|rij| <1, Vi,j can be ensured by choosing as pivot in each iteration of the elimination
the element of the unreduced submatrix with largest module relative to the norm of the
row it occupies.*

We can thus reorder G as <T V), where T' € R™" is nonsingular and R = T~V

A column V. ; is then chosen from V', with Z being represented by
Z=XaY = (T v ,j> B @ VB L, (A.8)

where V_ represents the matrix formed by removing V. ; from V. X is then, conservatively,
reduced to the parallelotope X =T (I + diag|R. ), with Z=X @Y.
Finally, the row V. ;, which will be incorporated into 7', can be chosen so as to

minimize the increase in volume v(X)—v(X). This is equivalent to finding the j € Zj, 41 5,]

Jl

that minimizes
AG) = [T+ Irh) - (1 +> |mj|> : (A.9)
=1 1=1
Remark A.1. For eliminating k generators recursively, it is possible to make the Gauss-
Jordan elimination only once, with the matrices T" and R being directly updated at each

iteration by
TH =T + diag|R. ;]), R" = (I + diag|R. ;|)"'R. (A.10)

3Notice that if G is not full line rank, Z is degenerated, having less than n dimensions. Therefore, this
reduction is always possible if Z has a non-empty interior, which is generally the case for all zonotopes

considered in this work.
4Given a matrix A € R™*" the norm of a row A; . is considered here as the induced infinity-norm

of the linear transformation A; . : R" — R, i.e. [[A; . [ =227, |agl-



Appendix B

Auxiliary Lemmas

Lemma B.1 (Input-to-State Lyapunov Stability [12]). Consider system (2.1) subject to
a control law ux = k(zy). Or, alternatively, the closed-loop system xyi1 = fo(xk) + wy =
f(zk, k(xg)) +wy, where wy, € W is viewed as an input. Given X CR™ a robust positively
invariant set of the closed-loop system', assume that there exists a function W: R™ — R

such that, for all x), € X:

o ([l ~ ) < W (ze) < as(llx — 1), (B.1a)
W (1) = W (i) < —as(llox — ) +6(|wio ) (B.1b)

where T € X is a given constant state, oy, as and ag are Koo -functions, and 0 is a
K-function. Then, W (xy) is said to be an Input-to-State Lyapunov function and the
closed-loop system is Input-to-State Stable (ISS), i.e. there exist a KKL-function § and a

IC-function v such that, given any initial state xo € X:
|z — Z|| < B(||lzo — 7|, k) + V(HW[M]H)’ vk € N. (B.2)

Proof. The proof arguments are the same of related works [12, 20]. However, a brief
demonstration is presented here to provide a self-contained stability analysis. In the
following, o is used to represent function composition and id: R™ — R™ to represent the
identity function. Defining oy = a3 o0 oy ! and w,, = sup{||wy|, k € N}, Eq. (B.1b) can

be rewritten as follows:
W (xky1) — Wi(zg) < —aa(W(xg)) + 0(wpn). (B.3)

Without loss of generality, assume that id — oy is a K-function 2. Let p be a K.-function
such that id — p is also a Ko-function, and consider the set D = {x € R": W(z) < ¢},

YHe o, € X = 2141 = fuolag) +wi € X, for any wy € W.
2This can be achieved replacing as by d&; = asz + p, where j is a suitable K-function such that

Ga(s) > az(s), Vs > 0.
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where ¢ = a; ' o p~t 0 f(w,,). Now, the proof is divided in two steps: (i) x), € D, and (ii)
z & D. For the case (i), 7, € D = W(xy,) < c=a; ' op~tob(wy,), poas(c) = 0(w,) by
definition, and (id — p) o ay is a K-function, being the composition of K-functions. Then,
from (B.3):

W(zps1) < (id — ag)(W(xp)) + 0(wm) + p o as(c) — po au(c)
< (i — as)(e) + po as(e) + B(wnm) — po ()
= (poas—a)(c) +c+0(wn) —poau(c)
= —(id — p) o ay(c) + ¢
<ec. (B.4)
Therefore, the set D is robust positively invariant, as x;, € D = x,,1; € D, and if there
exists ko € R such that zy, € D, then 2, € D and W () < a; ' o p~tod(w,) = F(wy,)
for all k > ko, where 4 = a; ' o p~' 0§ is a K-function.
Now assume that z; ¢ D, such that V(z;) > ¢. Then, from the positive invariance
of D, z; ¢ D, Vj < k and po ay(W(z)) > 6(wy,). Then, from inequality (B.1b):
Wipi1) = Wilar) < —oa(W(ak)) + 0(wm) + p o aa(W(xr))) — pp o as(W(2x))
= —(id = p) 0 (W (xx)) + 0(wm) — p o as(W(w))
< —(id = p) o (W (ay)) (B.5)
and W (zy,) decreases at each sampling instant by at least a IC-function of itself. Therefore,
by a standard comparison lemma [11], there exists a L-function § such that W (z)) <
B(W (x0), k) for all k which satisfies 2, & D.

The two cases can then be combined, with W (zy,) < max{%(wn,), (W (x0), k)} <
BW (x0), k) 4 4(wn,), for all k € N, and from (B.1a):

lzx = 7| < a7 (Blaa(llze — 7)), k) + 4 (wn))

= B(llze = ||, k) + y(wm), (B.6)
where 8(s,t) = a7 (B(aa(s),t)) is a KL-function and v = a;' 04 is a K-function. Due
to the causality of the nonlinear system, v(w,,) can be replaced by ’)/(HW[()M‘ ), which
completes the proof. O

Lemma B.2 (K-function upper bound extension). Consider a couple of sets X, with
X CR" QC X, and x* in the interior of Q. Let V(x) : R" — R be a scalar function
such that there ezists a finite constant M > 0 € R such that V(z) < M for all x € X and
there exists a IC-function a such that V(z) < a(||lx — z*||) for all x € Q.

Then, there exists a Koo-function 5 such that V(z) < S(||z — x*||) for all x € X.
Furthermore, if a(||z —z*||) = b|lz —z*||*, with b > 0,a > 1 € R, then there exists
b>0¢€R such that V(z) < bz —2*||*, Vo € X.
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Proof. Since z* is in the interior of 2, there exists ¢ > 0 € R such that ||z —z*|| >

e, Va ¢ Q. Therefore, for any x € X\ 2, a > 1 € R, we have
V(z)

lz = |*

<e, (B.7)

where XY \ Q = {z € X: 2z ¢ Q} and ¢ = ¢ *M. Finally, defining 5(||z — 2*||) =
max(a(||z — z*||), ¢ ||z — z*||*) a Ko-function, we have V(z) < g(||z — z*||), Vo € X. If
a(||lr —z*|)) = b|lx — 2*||%, taking b = max(b, ¢) results in V(z) < bl|jlz — 2*||*, V2 € X.

This result is inspired by a related lemma with respect to the origin [20, Lemma 4|. O

Lemma B.3 (Quadratic offset cost). Consider the quadratic positive definite function
Vo: Vi = R given by Vo(y) = y™Ty, T = 0 € RP*P | where ), C RP is a convex set. Given
ay € RP, let y° be the minimizer of Vo(ys — yi) for ys € Vy. Then, we have

Vo(ys — y) = Vowe —w) > (ys —v2) T (ys — v2), Yys € V. (B.8)

In particular, since T is positive definite, Eq. (5.10) is satisfied with ao(|lys —y2||) =

At s — 1217, where A > 0 is the smallest eigenvalue of T .
Proof. First, notice that, from the convexity of }; and optimality of y?, we have
VTVo(ys = ye)| .y (Us — 49 20, Vys € V. (B.9)
Since VVo(ys — y) = 2T (ys — v1), then (y2 — y)7T(ys — y2) > 0, and we have
Vo(ys = ) = (s — 4" T(ys — ) = (2 — e + (s — YT — ye + (s — ¥2))

=W —y) T (yg — ye) +2(yg — ye) ™ T(ys — yg) + (Ws — y2) T (ys — ¥2)
> Vo(ye — i) + (ys — y2) ™1 (ys — y2). (B.10)

]

Lemma B.4. Consider the tracking NMPC' optimal control problem Pk (xg,y:) and let
Assumptions 5.1, 5.2, 5.8 and 5.4 hold. Then, for any feasible reference ys € Y, and
target y, € RP, we have:

lop —zsll <es = Vi(owye) < Viow — 25, 5) + Volys — ), (B.11)
where xs = 0,(ys) and €5 is given as in Assumption 5.4 (ii).

Proof. First, consider a cut of the terminal set I' for y, € ), given by: I'), = {z €
R™: (x,ys) € I'}. The admissibility of I' C Ay ensures that (x,v(x,ys)) € Z.(N) C
Z:(j), Vj € [0,N], for any € I'y, and, from the RPI definition of I', zy € Ty, with
Tip1 = [r(z;,0(x5,95)), Vj € [0, N — 1], is such that z; € I',, Vj € [0, N].



84

In other words, the unconstrained terminal control law obtained from y; is a fea-
sible candidate for P (xy,y:) if 2y € T'y,. Therefore, from the decreasing terminal cost

assumption (5.11c) and optimality of the effective solution:

Vi (@, y) < VR (2g,ye) < Vi(og — s, ys) + Vo(ys — yi), (B.12)

for all z;, € T',,, where V3’ (zg,y:) represents the candidate solution obtained from the
terminal control law with artificial reference ;.

Finally, from the RPI definition of I, since z; € Iy, then f(xs, ui(xs, ys)) BS(N) =
s ® S(N) C I'y, and, since the origin is an interior point of S(N), ||z — zs|| < &5 =
z, — x5 € S(N) =z, € I',, which completes the proof. O

Lemma B.5. Consider the NMPC optimization problem Pk (xk,y:), x € Xy, y: € RP.
Let %, = 0.(yi,), where yi, = yi(zr,ys) is the artificial reference associated to the
solution of Py (xy,y:), and x° = 0,(y°), where y° is given as in (5.9). If Assumptions 5.1,
5.2, 5.8 and 5.4 are satisfied, then there exists a Koo-function oy such that:

), (B.13)

e — 22| < av(||zx — 25|
for all x, € Xy and y; € RP.

Proof. For simplicity of notation, let e, = £,/2, where ¢, is given as in Assumption 5.4
(i), W*(zk, ) = Vi (zk, yt) — Vo(y? — y) and L, € R be a Lipschitz constant for g, in
Vi, ie o) — 02(Wa)ll < Lo lYp — Yall s YYa, ¥p € Vi Now, two cases are considered:
} > £y

Assuming ||z, — 2%, || < &, consider y, = Ayl + (1 — A)y2, with 0 < A, <
1 and z, = 0.(y,) >
vz — 2| < My, Vyi,ye € V. Consider ) sufficiently close to 1 such that (1 — \.) <
€o(LgM,)~'. Then, |z, — T | < Ly ||y, — y;‘kH = L,(1 = X) Hy;‘k —y?|| < € and

|z — || < ||xk — x:kH + Hx:k — xn” < 2¢, = &, for all A, > ..

(i) ka — x’;kH < g, and (ii) ||a:k — Ty

From the compactness of ), there exists M, € R such that

Therefore, for A, > \. we have ||} — x,|| < €, and, from Lemma B.4, the following
upper bound for W*(xy,y;) can be defined:
Wk, ye) < Vi(ak — ) + Vo(yn — ye) — Vo(yd — )
< bllak — x| + Volyy — ye) = AVo Y — ye) — (1= A)Vo(y? — vi)
< bflae = 2l + al, — |+ AVolyin — ve) = Volul — ur))
— (1 =2)(Vo(yd = y) = Volyl — wi))

< 2% |y, — af ||" 4 20LE [[yin — wnl|” + A (Vo Wik — ye) — Vo(us — wr))
= 0 e — |+ 2800~ A e — ]
+A(Vo(ir — ve) = Volys — v)), (B.14)

3Notice that, from the convexity of ), Yn € V-
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where the convexity of Vo(-), [[p1 + p2[|® < max(2?[p:[|*, 2% [[p2[|*) and y, — 5, = (1 -
Ae)(YS — i) were used. Furthermore, from W*(zy,y:) > Vo(yiy — yt) — Vo(ys — i), we

have

Vo(Wer —y:) — Volys —ye) <2 Hlﬂk — T "4+ 2°DLg (1 — Ae)® ||yap — ysoHa
+ A(Vo (Wi — ve) — Volys —u)), (B.15)

or alternatively,

Vo(Wiw —ye) — Voly? — ) < (1—Xo)7'2% ||y, — 2,

a a a a—1
+29DLA(1 — )

i — vl
(B.16)
Now, since Vo (yi, — ve) — Vo(w? — ye) = aol||vie — v

ao(|lvie —well) < (@ = X)7"29 ||l — 3,

a a a a—1
+29BLY(1 — A,)

vor —S" (B.17)

and, for any 0 < ¢, <1 € R,

cato([|yix = ve|) < = (1 = ca)ao((|yi,s — vel) = 2°0Lg (1 = Ao)™ ™ |lys — w2[[")
(1= A) 72 ||l — 2l ]| (B.18)
Based on Assumption 5.4(i) and defining ¢, = min(c,, M, “ao(so)), we have

ao(||lyie — y;’H) > G, Hy:k — y;’Ha, Vi ys € Vi Therefore, since a > 1 and limy, (1 —
Ae)*"! = 0, there exists a A, > A, such that (1 —X.)*"! < (2°6Lg) (1 — ¢a). Then

(1= ca)ao(||yze — v2||) = 2°bLa(1 = A)*

Yo — y?”a and thus
cato([|yze = v2l) < (1= X0) 2% [|aw — a3, ]|

v = US|l < o' (2" (1= A) 2% [fan — 2Z,][")

||x§k — xgH <L, a51 (c;l(l — A_C)’12“b H:ck — :c:k|

9. (B.19)

Finally, defining the K-function éy(s) = s + Lyag' (¢;'(1 — A)7'2°s%) and using the

a

triangular inequality, we have
ok — a2l < [lox — a2l + o — 22 < vlllon—atal). (B20)

Inequality (B.13) is thus satisfied for ||z; — a::k” < &,. For the case ||z — x:kH > g, a
similar argument of Lemma B.2 can be used. From the compactness of the constraints,
there exists M, € R such that ||z, — 29| < M,, Vz, € Xy,y° € Y. Defining ¢, = ¢, M,

and ay(s) = max(ay(s), é,s), then
o — 22l < v ([|ar — 224])) (B.21)

for both cases, where ay is a K -function. O
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Lemma B.6. Consider the optimization problems Py(zy), Pl(zy, i) and Pi(zy, ;)
defined in Chapter 6, under the additional Assumption 6.1. The unconstrained terminal

control law s always admissible inside the terminal set. That is:

n

(i) In the regulation case (Py(xzy) and Pi(xy, i), the control sequence recursively

defined by vy ji = ve(Tpyjie), J=1...N =1 is admissible if x, € Xj.
(i) In the tracking case (P(xi,u:)), the artificial variable y, and control sequence

Vktjie = Ve(Thijii, Ys), J=1...N —1 is admissible if (zy,ys) €T
Proof. The proof is divided into the two cases: regulation and tracking, respectively.

(i) From the admissibility of the terminal set (X; C Vy), we have (z,v(z)) € Z-(N) C
Z:(3), Vj € [0,N] and z € X(N) C X(j), Vj € [1,N], for any z € Xp. If
7, € Xy, from the positive invariance of Xy we have xjjx € Xy, 7 =0... N if the
terminal control law is considered. Therefore, the constraints (2, ve(Tr+jik)) €
Z:(7), 7=0...N—=1, 2p4j € X“(j), j=1...N—1and x4y € Xy are satisfied

and the terminal control law is feasible in the entire prediction horizon.

(ii) From the admissibility of the terminal set (I' C Ay), we have (z,v/(x,ys)) €
Z.(N) C Z.(j), Vj € [0,N] and x € X*(N) C X°(j), Vj € [1,N], for any
(w,ys) € I'. If (4, y,) € T, being I a positive invariant set for tracking, (24, ¥s) €
I' 57 = 0...N if the terminal control law with artificial reference y, is consid-
ered. Therefore, the constraints (zgijk, ve(Trtjik,ys)) € 2x(j), j = 0...N — 1,
Tppji € X°(4), 7=1...N —1 and (xnp,ys) € I' are satisfied and the terminal

control law, with artificial reference vy, is feasible.



Appendix C

Zionotopic Inclusion Properties

In this appendix, additional properties of the zonotopic inclusion (Theorem 4.1)
are deduced. First, consider the linear operator ¢(-) which takes a matrix A € R™™

into the diagonal matrix P € R™*" whose elements are the sums of the lines of A, i.e.
U(A) = (pij)nxn, With

pii:Zaij,i:1...n, pij =0, Vi #]. (C.1)
j=1

Being «(-) a linear operator, (A + B) = 1(A) + «(B), YA, B € R™"™. Furthermore, given
Ae R C e R™P, with R = 1(Au(C)) and Q = t(AC), we have

m P p m
Ty — Z [ (Z Cjk) = Z Z Ai;Cik = (i, 1=1... n, (CQ)
j=1 k=1

k=1 j=1

and ¢(Au(C)) = 1(AC). Notice that, using this linear operator, the zonotopic inclusion of
the product of an interval matrix J € I"*™ and a centered zonotope X = MB5! C R™

can be compactly represented by:
o (IX) = (mid()M  1(rad(T)|M])) Bi™, (C.3)

and the interval hull of X is given by I(X) = «(|M|)BZ. Based on these definitions,

Theorem C.1 presents some useful properties of the zonotopic inclusion.

Theorem C.1. Given X = MBLX',Y = NBy*> C R™ centered zonotopes, and A, B €

"™ interval matrices, we have
(i) o(A(X ©Y)) = o(AX) @ o(AY),
(ii) o((A + B)X) C o(AX) @ o(BX),
(iii) If X C Y, then o(AX) C o(AY).
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Proof. (i) From (C.2) and the fact that, given P;, P, € R™*™ positive diagonal matrices,
(Pl + PQ)B?O = PIBQO @ PQBgO, we have

So(A(X V) = mid(A)(X ©Y) @1 (rad(A) (M| |N])) BL
= mid(A)X & mid(A)Y & t(rad(A)((|M]) + «(|N]))) B
= mid(A)X @ mid(A)Y @ («(rad(A)|M]|) + c(rad(A)|N|))BL
= (mid(A)X @ v(rad(A)|M|)BL) ® (mid(A)Y @ (rad(A)|N|)BL,)
= o(AX) @ o(AY).

(ii) First, notice that we have

o((A+B)X) = (mid(A) + mid(B))X @ t((rad(A) + rad(B))|M|)BL,
o(AX) ®o(BX) =mid(A)X @ t(rad(A)|M|)BL & mid(B)X @ «(rad(B)|M|)BL,
= mid(A)X & mid(B)X @ «((rad(A) + rad(A))|M|)BL

and therefore, since (mid(A)+mid(B))X C mid(A)X @mid(B)X, we have o((A +
B)X) Co(AX) @ o(BX).

(iii) From X C Y, we have mid(A)X C mid(A)Y. Tt is thus sufficient to prove
that ¢(rad(A)|M|)B% C u(rad(A)|N|)BL. Since rad(A)X C rad(A)Y, the in-
terval hull of the zonotope rad(A)X is contained in the interval hull of rad(A)Y.
t(rad(A)|M|)BL C t(rad(A)|N|)BZ then follows from the fact that rad(A) > 0.
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