

DISSERTAÇÃO DE MESTRADO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA DA UFBA

REDE EQUIVALENTE A TRANSISTOR MOS COM BAIXO LIMIAR DE SATURAÇÃO

Autor

Adson Alves Fernandes

Orientadora

Ana Isabela Araújo Cunha

Coorientador

Maicon Deivid Pereira

SALVADOR 2020

DISSERTAÇÃO DE MESTRADO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA DA UFBA

REDE EQUIVALENTE A TRANSISTOR MOS COM BAIXO LIMIAR DE SATURAÇÃO

Autor: Adson Alves Fernandes Orientadora: Ana Isabela Araújo Cunha Coorientador: Maicon Deivid Pereira

Dissertação de mestrado elaborado por Adson Alves Fernandes, como parte das exigências para conclusão do curso de pós-graduação strictosenso em Engenharia Elétrica da Universidade Federal da Bahia, sob a orientação dos professores Ana Isabela Araújo Cunha e Maicon Deivid Pereira.

SALVADOR 2020

Alves Fernandes, Adson

Rede equivalente a transistor MOS com baixo limiar de saturação / Adson Alves Fernandes. -- SALVADOR, 2020.

74 f.

Orientadora: Ana Isabela Cunha. Coorientador: Maicon Deivid Pereira. Dissertação (Mestrado - Engenharia Elétrica) --Universidade Federal da Bahia, Escola Politécnica, 2020.

1. LSOT. 2. MOSFET. 3. Baixo limiar de tensão de saturação. 4. Espelho de corrente cascode. I. Cunha, Ana Isabela. II. Pereira, Maicon Deivid. III. Título.

Adson Alves Fernandes

"Rede Equivalente a Transistor MOS com Baixo Limiar de Saturação"

Dissertação apresentada à Universidade Federal da Bahia, como parte das exigências do Programa de Pós-Graduação em Engenharia Elétrica, para a obtenção do título de Mestre.

APROVADA em: 15 de Dezembro de 2020.

BANCA EXAMINADORA

Prof^o. Dr^o. Ana Isabela Araújo Cunha Orientador/UFBA

Prof. Dr. Maicon Deivid Pereira Coorientador/UFBA

Prof. Dr. Edson Pinto Santana UFBA

Prof. Dr. Robson Nunes de Lima

UFBA

Prof. Dr. Paulo Márcio Moreira e Silva UNIFEI

Bulo Marcio Morcira e Silva

SUMÁRIO

AGRADECIMENTOS	6
RESUMO	7
LISTA DE FIGURAS	9
LISTA DE TABELAS	11
LISTA DE SÍMBOLOS	12
1. INTRODUÇÃO	13
1.1. CONTEXTUALIZAÇÃO	13
1.2. OBJETIVOS	14
2. FUNDAMENTAÇÃO TEÓRICA	15
2.1. OPERAÇÃO DO MOSFET	15
2.2. MODELO AVANÇADO COMPACTO DO MOSFET	18
2.3. ESPELHOS DE CORRENTE	20
3. REDE PROPOSTA PARA DISPOSITIVO DE BAIXO LIMIAR DE SATURAÇÃO (LSOT)	29
4. VALIDAÇÃO DA REDE LSOT	35
5. APLICAÇÃO DA REDE LSOT EM ESPELHOS DE CORRENTE	60
6. CONCLUSÃO	72
REFERÊNCIAS	74

AGRADECIMENTOS

Sinto-me realizado por ter alcançado mais este patamar na minha vida acadêmica, que considero ser potencialmente infinita para qualquer amante dos estudos. Temos sempre muito a aprender. Mas sem a verdadeira vontade de se chegar mais longe, aliada a um incentivo extra, fica tudo mais difícil.

Por isso, necessariamente, precisamos de um "empurrãozinho" para sairmos da inércia. É nesta hora que surgem as palavras mágicas e o pensamento positivo das pessoas às quais agradeço aqui: à minha querida esposa Cláudia Benta, pelo despertar desse sonho e pelas primeiras palavras de incentivo, que se perpetuaram até o fim; aos meus amados filhos Lara e Felipe, inspiração eterna; aos meus pais Antonio (In Memoriam) e Maria, pelo constante apoio aos meus estudos; aos colegas de trabalho Humberto Rocha, Roque Fernandes, Walmir Gomes e Cleidison Lima, por me fazerem também acreditar que era possível; aos colegas da UFBA Fabian Souza, Lucas D'Eça, Rodrigo Barros, Juarez Caetano e outros que me ajudaram nessa batalha; aos professores do PPGEE Edson Santana, Maicon Deivid e Robson Nunes, pela aceitação e crédito ao trabalho; e, em especial, à professora Ana Isabela, pelo despertar desse trabalho e pelo incansável apoio em todos os momentos.

Com o fim dessa etapa, fica uma lacuna a ser preenchida com o advento de mais um desafio. Brevemente!

RESUMO

Este trabalho apresenta uma rede de quatro transistores MOS, que é aproximadamente equivalente a um de seus transistores, mas que apresenta tensão de limiar de saturação mais baixa. Características DC corrente-tensão de seis exemplos da rede e do respectivo transistor que ela pretende substituir, tanto com transistores canal N como com transistores canal P, são analisadas por simulação por meio do software SMASH utilizando o modelo BSIM para uma tecnologia CMOS 130 nm com alimentação de 1,2 V. Os resultados de simulação revelam reduções no limiar de saturação da ordem de algumas centenas de milivolts para a maior parte dos casos. Uma montagem com protótipos discretos permite observar a operação da rede também por meio da medição de características DC corrente-tensão, mostrando a validade do conceito. A rede proposta é adequada para substituir transistores de saída em espelhos de corrente cascode em tecnologia CMOS, de modo que a baixa condutância de saída seja alcançada, com um aumento na excursão da tensão de saída. Esta afirmação é embasada na comparação entre resultados de simulação de espelhos simples, cascode e cascode com um transistor substituído pela rede, também conduzida neste trabalho. Tais resultados mostram também que o espelho cascode modificado pode preservar outras características do espelho cascode tradicional, como o erro de descasamento DC e a largura de banda, sem significativo aumento da potência e ao custo de um aumento da área ativa não superior a duas vezes.

Palavras-chave: limiar de saturação do MOSFET, espelho de corrente cascode, projeto de circuitos analógicos em tecnologia CMOS.

ABSTRACT

This work presents a network of four MOS transistors, which is approximately equivalent to one of its devices, but which presents a lower saturation onset voltage. DC current-voltage characteristics of six network examples and the respective transistors to be replaced, either with n-channel or p-channel devices, are analyzed through simulation in SMASH software using BSIM model for a CMOS 130 nm technology, with 1.2 V power supply. For most cases, the simulation results reveal saturation onset voltage reduction in the order of a few hundreds of millivolts. An assembly with discrete prototypes allows also observing the network operation through the measurement of DC currentvoltage characteristics, for conceptual validation. The proposed network is adequate to replace output transistors in cascode current mirrors, so that a low output conductance is achieved, with increased output voltage swing. This assertion is based on the comparison of results obtained from the simulation of simple and cascode mirrors, as well as casdode mirrors with a transistor replaced by the proposed network. These results demonstrate that the modified cascode mirror may preserve other characteristics of the traditional cascode mirror, such as the DC mismatching error and the bandwidth, without a significant increase in power and at the cost of an active area augmentation not above twice.

Keywords: MOSFET saturation onset voltage, cascode current mirror, CMOS analog design.

LISTA DE FIGURAS

FIGURA 2.1 MOSFET canal N de 4 terminais	15
FIGURA 2.2 Regiões triodo e de saturação direta para um MOSFET canal N em	
	17
FIGURA 2.3 Extrapolação da característica $I_D x V_{DS}$ do MOSFET na região de	
saturação para determinação da tensão de Early V_A .	17
FIGURA 2.4 Características $I_D x V_{DS}$ do MOSFET no regime de inversão	10
fracaFIGURA 2.5 Espelho simples	
FIGURA 2.5 Espeino simples FIGURA 2.6 Modelo do MOSFET para operação com pequenos sinais em baixíss:	
frequênciasfrequências	
FIGURA 2.7 Espelho cascode	
FIGURA 2.8 Espelho de Ramírez-Angulo	
FIGURA 2.9 Amplificador diferencial Ada	
FIGURA 2.10 Resultados comparativos para o espelho simples e o cascode	27
FIGURA 3.1 Diagrama esquemático do LSOT	
FIGURA 3.2 I_{D1} , I_{D2} e $I_D = I_{D1} + I_{D2}$ versus V_{DS1}	
FIGURA 3.3"Setup" de simulação para LSOT	
FIGURA 4.1 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . W_1 = 0,16 μ m, L_1 = 0,2 μ m, W_2 = 0.16 μ m, U_1 = 0,16 μ m, U_2 = 0.16 μ m, U_3 = 0.16 μ m, U_4 = 0.18 μ m, U_5 = 0.18 μ m,	0,10
μ m e $L_2 = 1 \mu$ m, V_{GB1} de 0,5 V a 1,1 V. $V_{SB1} = 0$ V	37
FIGURA 4.2 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . W_1 = 0,16 μ m, L_1 = 0,2 μ m, W_2 =	0,16
μm e $L_2 = 1$ μm, V_{GB1} de 0,5 V a 1,1 V. $V_{SB1} = 0,1$ V	38
FIGURA 4.3 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . W_1 = 0,16 μ m, L_1 = 0,2 μ m, W_2 =	0,16
μm e $L_2 = 1$ μm, V_{GB1} de 0,5 V a 1,1 V. $V_{SB1} = 0.2$ V	38
FIGURA 4.4 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . $W_1 = 20 \mu m$, $L_1 = 0.2 \mu m$, $W_2 = 5$	μm
e $L_2 = 0.16 \mu\text{m}, V_{GB1}$ de 0.5V a $1.1 \text{V}. V_{SB1} = 0 \text{V}$	-
FIGURA 4.5 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . $W_1 = 20 \mu m$, $L_1 = 0.2 \mu m$, $W_2 = 5$	μm
e $L_2 = 0.16 \mu\text{m}$, V_{GB1} de 0.5 V a 1.1 V. $V_{SB1} = 0.1 \text{V}$	40
FIGURA 4.6 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . $W_1 = 20 \mu m$, $L_1 = 0.2 \mu m$, $W_2 = 5$	μm
e $L_2 = 0.16 \mu\text{m}$, V_{GB1} de 0.5 V a 1.1 V. $V_{SB1} = 0.2 \text{V}$	
FIGURA 4.7 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . $W_1 = 0.5 \mu m$, $L_1 = 5 \mu m$, $W_2 = 0.1$	
μ m e $L_2 = 5 \mu$ m, V_{GB1} de 0,5 V a 1,1 V. $V_{SB1} = 0$ V	41
FIGURA 4.8 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . $W_1 = 0.5 \mu \text{m}$, $L_1 = 5 \mu \text{m}$, $W_2 = 0.1 \mu \text{m}$	
μ m e $L_2 = 5 \mu$ m, V_{GB1} de 0,5 V a 1,1 V. $V_{SB1} = 0,05$ V	
FIGURA 4.9 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . W_1 = 0,5 μ m, L_1 = 5 μ m, W_2 = 0,1 μ m e L_2 = 5 μ m, V_{GB1} de 0,5 V a 1,1 V. V_{SB1} = 0,1 V	
FIGURA 4.10 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . W_1 = 1 μ m, L_1 = 1 μ m, W_2 = 0,8	
e $L_2 = 1 \mu m$, V_{GB1} de -0,5 V a -1,1 V. $V_{SB1} = 0$ V	
FIGURA 4.11 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . W_1 = 1 µm, L_1 = 1 µm, W_2 = 0,8	
e $L_2 = 1 \mu m$, V_{GB1} de -0,5 V a -1,1 V. $V_{SB1} = -0,1$ V	
FIGURA 4.12 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . $W_1 = 1 \mu m$, $L_1 = 1 \mu m$, $W_2 = 0.8$	
e $L_2 = 1 \mu m$, V_{GB1} de -0,5 V a -1,1 V. $V_{SB1} = -0.2 \text{V}$	
FIGURA 4.13 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . $W_1 = 5 \mu m$, $L_1 = 2 \mu m$, $W_2 = 2 \mu m$	
$L_2 = 0.67 \mu\text{m}, V_{GB1} \text{de} -0.5 \text{V} \text{a} -1.1 \text{V}, V_{SB1} = 0 \text{V}$	45

FIGURA 4.14 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . $W_1 = 5 \mu m$, $L_1 = 2 \mu m$, $W_2 = 2 \mu m$	m e
$L_2 = 0.67 \ \mu\text{m}, V_{GB1} \ \text{de } -0.5 \ \text{V} \ \text{a} -1.1 \ \text{V}. V_{SB1} = -0.1 \ \text{V}.$	46
FIGURA 4.15 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . $W_1 = 5 \mu m$, $L_1 = 2 \mu m$, $W_2 = 2 \mu m$	m e
$L_2 = 0.67 \mu\text{m}, V_{GB1} \text{ de } -0.5 \text{V a} -1.1 \text{V}. V_{SB1} = -0.2 \text{V}$	46
FIGURA 4.16 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . W_1 = 20 μ m, L_1 = 6 μ m, W_2 = 4 μ	um e
$L_2 = 1 \mu \text{m}, V_{GB1} \text{ de } -0.5 \text{ V a } -1.1 \text{ V}. V_{SB1} = 0 \text{ V}$	
FIGURA 4.17 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . W_1 = 20 μ m, L_1 = 6 μ m, W_2 = 4 μ	um e
$L_2 = 1 \mu \text{m}, V_{GB1} \text{ de } -0.5 \text{ V a } -1.1 \text{ V}. V_{SB1} = -0.1 \text{ V}.$	
FIGURA 4.18 Curvas I_D , I_{D1} e I_{D2} versus V_{DS1} . $W_1 = 20 \mu m$, $L_1 = 6 \mu m$, $W_2 = 4 \mu m$	um e
$L_2 = 1 \mu \text{m}, V_{GB1} \text{ de } -0.5 \text{ V a } -1.1 \text{ V}. V_{SB1} = -0.2 \text{ V}.$	
FIGURA 4.19 Curvas I_{D3} , V_{GD1} e V_{GB2} versus V_{DS1}	
FIGURA 4.20 Diagrama esquemático do CI HCF4007	
FIGURA 4.21 Montagem ilustrativa do transistor M_2 do LSOT	55
FIGURA 4.22 Medidas referentes ao LSOT com $L_2 = L_1$	57
FIGURA 4.23 Medidas referentes ao LSOT com $L_2 = 2L_1$	57
FIGURA 4.24 Medidas referentes ao LSOT com $L_2 = 3L_1$	58
FIGURA 5.1. Espelho Cascode com destaque para o transistor a ser substituído p	elo
LSOT.	61
FIGURA 5.2 Gráficos comparativos de espelhos para a configuração 1X dos	
	64
FIGURA 5.3 Gráficos comparativos de espelhos para a configuração 1X dos	
espelhos Canal P	65
FIGURA 5.4 Gráficos comparativos de espelhos para a configuração 10X dos	
espelhos Canal N	66
FIGURA 5.5. Gráficos comparativos de espelhos para a configuração 10X dos	
espelhos Canal P	67
FIGURA 5.6. Gráficos comparativos de espelhos para a configuração 100X dos	
espelhos Canal N	68
FIGURA 5.7. Gráficos comparativos de espelhos para a configuração 100X dos	
espelhos Canal P	69

LISTA DE TABELAS

TABELA I. Comparação entre características simuladas do espelho cascode e do espelho de Ramirez-Angulo (tecnologia CMOS 130 nm)
LSOT canal <i>N</i> estreito curto
TABELA V Combinações das tensões V_{GB1} e V_{SB1} usadas nas simulações para o
LSOT canal N largo curto
TABELA VI. Combinações das tensões V_{GB1} e V_{SB1} usadas nas simulações para o LSOT canal N estreito longo
LSOT canal $P(W_1 = 1 \mu m, L_1 = 1 \mu m, W_2 = 0.8 \mu m e L_2 = 1 \mu m)$
TABELA VIII. Combinações das tensões V_{GB1} e V_{SB1} usadas nas simulações para o
LSOT canal $P(W_1 = 5 \mu m, L_1 = 2 \mu m, W_2 = 2 \mu m e L_2 = 0.67 \mu m)$ 45
TABELA IX. Combinações das tensões V_{GB1} e V_{SB1} usadas nas simulações para o
LSOT canal $P(W_1 = 20 \mu m, L_1 = 6 \mu m, W_2 = 4 \mu m e L_2 = 1 \mu m)$
TABELA X. Valores de V_{DSSAT} para M_1 (V_{DSSAT1}) e para o LSOT (V_{DSSATL}): W_1 = 0,16 μm, L_1 = 0,2 μm, W_2 = 0,16 μm e L_2 = 1 μm. Canal N
comparativas dos espelhos canal N
TABELA XVII. Dimensões dos transistores de saída usadas nas simulações
comparativas dos espelhos canal P
TABELA XVIII. Parâmetros de desempenho dos espelhos Cascode com LSOT, Cascode tradicional e Widlar para Configuração <i>IX</i>

LISTA DE SÍMBOLOS

 V_{GB} - tensão porta-substrato

 V_{SB} – tensão fonte-substrato

 V_{DR} – tensão dreno-substrato

 V_{TO} - tensão limiar de equilíbrio

 V_{TON} - tensão limiar de equilíbrio canal

N

 V_A - tensão de Early

V_{DS} – tensão dreno-fonte

 V_{DSSAT} – tensão dreno-fonte de

saturação

 V_{SDSAT} – tensão fonte-dreno de

saturação

 V_G – tensão de porta

 V_{GD} – tensão porta-dreno

 V_{GS} – tensão porta-fonte

 ϕ_t - potencial termodinâmico

T - temperatura absoluta

 I_S - corrente de normalização

 i_r - componente de saturação reversa

 C'_{ox} - capacitância do óxido por unidade de área

L - comprimento do canal de inversão

 M_1 – transistor 1

 M_2 – transistor 2

 M_3 – transistor 3

 M_4 – transistor 4

 v_{OUT} – tensão de saída

 i_{IN} – corrente de entrada

 v_{IN} – tensão de entrada

Ada - ganho do amplificador diferencial

 V_o – tensão da entrada inversora

 g_{mb} - transcondutância de substrato

 g_{in} – condutância de entrada

 V_P - tensão de "pinch off"

 I_D – corrente de dreno

n - fator de rampa

 L_{eq} - comprimento equivalente

 V'_{DS} - limiar de saturação

K - constante de Boltzmann

q - valor absoluto da carga eletrônica

 i_f - componente de saturação direta

 μ - mobilidade dos portadores de carga

W - largura do canal de inversão

 I_{ssq} - corrente específica do transistor quadrado

 i_{OUT} – corrente de saída

 g_m - transcondutância de porta

 g_d - condutância de dreno

g_{out} – condutância de saída

 V_{SS} – tensão de alimentação negativa

 V_{DD} - tensão de alimentação positiva

ε - erro de descasamento DC

G - gate

D - dreno

S - fonte

B - substrato

 n_N - fator de rampa canal N

*I*_{bias} – corrente de polarização

1. INTRODUÇÃO

1.1. CONTEXTUALIZAÇÃO

Circuitos analógicos em tecnologia CMOS requerem a utilização de espelhos de corrente para a reprodução e escalamento dos sinais ao longo do processamento da informação [1]. Tais espelhos devem apresentar como características de desempenho desejáveis, entre outras [1]-[4]: baixa condutância de saída (boa regulação), alta condutância de entrada e ampla faixa de excursão da tensão de saída. Esta última característica é em geral prejudicada pela aplicação de técnicas para redução da condutância de saída, uma vez que deve ser garantida a operação dos transistores na região de saturação. A aplicação da técnica *cascode*, por exemplo, em que dois transistores do mesmo tipo são conectados em série com diferentes potenciais de porta, a fim de operarem ambos em saturação, restringe sobremaneira a excursão do potencial no nó de saída do espelho.

Na região triodo das características estáticas de saída de um transistor MOS, a corrente de dreno é constituída por duas componentes de saturação, direta e reversa, sendo que a componente de saturação reversa tende a desvanecer com o aumento da tensão de dreno e, portanto, com o avanço na direção da região de saturação. De acordo com esta abordagem, a aplicação de um recurso para cancelar total ou parcialmente a componente de saturação reversa da corrente de dreno na região triodo poderia antecipar a região de saturação, especialmente nos regimes de inversão moderada e forte.

Baseando-se nesta observação, neste trabalho concebeu-se uma estrutura formada por apenas quatro transistores MOS do mesmo tipo, onde este cancelamento é alcançado, sujeito a algumas limitações. Pretende-se que tal rede possa substituir um transistor simples, em um grande número de aplicações, porém proporcionando uma tensão dreno-fonte de limiar de saturação com magnitude apreciavelmente menor. Por simplicidade, tal rede será doravante denominada LSOT (*Low Saturation Onset Transistor*).

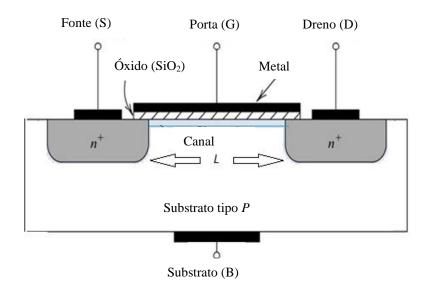
Estimamos que a substituição de transistores simples por unidades de LSOT em estruturas cascodadas, seja em espelhos, fontes, sorvedores ou amplificadores, possibilitará a ampliação da excursão do sinal de tensão na saída de tais circuitos.

1.2. OBJETIVOS

O objetivo principal deste trabalho é apresentar o LSOT como alternativa ao uso de transistores MOS simples quando uma tensão de limiar de saturação entre dreno e fonte de pequena magnitude é requerida.

Os objetivos específicos deste trabalho são:

- Avaliar teoricamente e por simulação o desempenho do LSOT e seus limites de operação;
- (ii) Estudar, por meio de simulação, a viabilidade de substituir transistores simples por LSOT em espelhos *cascode*, mantendo sua boa regulação e ampliando a excursão do sinal de tensão na saída.


Todo o trabalho de simulação mencionado será baseado em dispositivos de uma tecnologia CMOS 130 nm [5].

2. FUNDAMENTAÇÃO TEÓRICA

Neste capítulo são revisitados brevemente alguns temas relacionados à contribuição deste trabalho: noções sobre a operação do transistor MOS, o formalismo básico do modelo do transistor MOS que foi utilizado para explicar o princípio da rede proposta e conceitos relacionados a espelhos de corrente, classe de circuito em que se pretende avaliar a aplicabilidade da rede proposta.

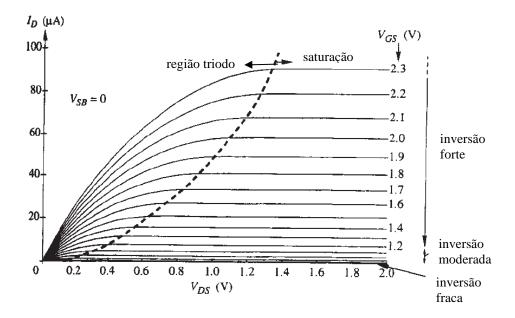
2.1. OPERAÇÃO DO MOSFET

Num MOSFET canal N (Figura 2.1) de quatro terminais – dreno (D), porta (G), fonte (S) e corpo ou substrato (B) – uma tensão porta-substrato V_{GB} positiva é convenientemente aplicada para que o dispositivo opere no regime de inversão, no qual os portadores minoritários (elétrons), imediatamente abaixo do óxido, tornam-se maioria em relação às lacunas [6]. Um canal de inversão é, assim, formado entre o dreno e a fonte, pelo qual irá fluir a corrente de dreno que, além de influenciada por V_{GB} , será definida também pelas tensões dreno-substrato e fonte-substrato, V_{DB} e V_{SB} .

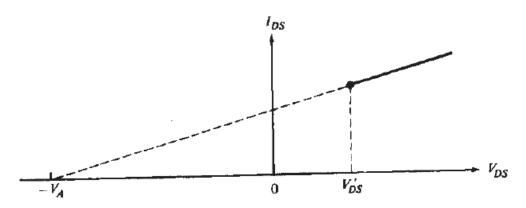
Figura 2.1. MOSFET canal *N* de 4 terminais. Extraída de [7], com tradução.

Por convenção, num MOSFET canal N, $V_{DB} > V_{SB}$, de modo que as cargas de impurezas doadoras da região de transição da junção dreno-substrato é maior na região do canal próxima ao terminal de dreno que na região próxima ao terminal de substrato.

Como estas cargas negativas concorrem com as cargas dos elétrons no espelhamento da carga da região de porta, observa-se um nível de inversão do canal menor no lado do dreno (menor concentração de elétrons).


A operação normal do MOSFET ocorre no regime de inversão e pode ser dividida em duas regiões, triodo e saturação (Figura 2.2). Em inversão moderada a forte, esta distinção está associada ao conceito de estrangulamento do canal ("pinch-off"): caso haja um aumento progressivo de V_{DB} , o MOSFET pode atingir a região de saturação direta, na qual $V_{DB} \ge V_P$, onde V_P é a tensão de "pinch off". A partir do valor de V_P , desprezados efeitos de segunda ordem associados às pequenas dimensões, aumentos em V_{DB} não influenciarão significativamente no valor da corrente de dreno I_D . Nesta condição, o canal tende a ficar estrangulado nas proximidades do dreno e a porção estrangulada do canal se prolonga ligeiramente no sentido dreno-fonte. Na região triodo, em inversão moderada a forte, $V_{DB} < V_P$.

Em [8] e [9] o valor de V_P foi aproximado por:


$$V_P \cong \frac{V_{GB} - V_{TO}}{n} \tag{2.1}$$

onde V_{TO} é a tensão limiar de equilíbrio e n é o fator de rampa.

Caso o canal seja muito curto, mesmo na região de saturação percebe-se uma variação da corrente de dreno com a tensão dreno-fonte, que pode ser modelada pela tensão de Early (V_A) . De maneira simplificada, a Figura 2.3 mostra que, quanto menor o módulo de V_A , maior será a variação de I_D na saturação. Fisicamente, é como se o valor do comprimento equivalente (L_{eq}) do canal na saturação fosse menor.

Figura 2.2. Regiões triodo e de saturação direta para um MOSFET canal *N* em inversão forte. Extraída de [6], com tradução.

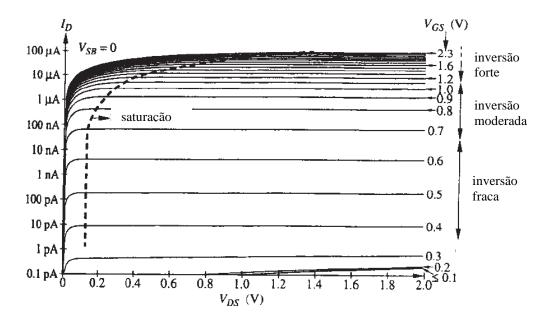


Figura 2.3. Extrapolação da característica $I_D x V_{DS}$ do MOSFET na região de saturação para determinação da tensão de Early V_A . V'_{DS} é o limiar de saturação. Extraída de [6].

Em inversão fraca (Figura 2.4), a saturação da corrente também acontece, mas não está associada ao estrangulamento do canal próximo ao dreno e tende a ocorrer para um valor aproximadamente constante de V_{DS} , em virtude de a corrente assumir um comportamento exponencial com a tensão. O limiar de saturação corresponde a:

$$V_{DS} \cong 4\phi_t = 4\frac{\kappa T}{q} \tag{2.2}$$

onde ϕ_t é o potencial termodinâmico, K é a constante de Boltzmann, T é a temperatura absoluta e q é o valor absoluto da carga eletrônica.

Figura 2.4. Características $I_D x V_{DS}$ do MOSFET no regime de inversão fraca. Extraída de [6], com tradução.

2.2. MODELO AVANÇADO COMPACTO DO MOSFET

O modelo Avançado Compacto do MOSFET (ACM) [9] [10] é um modelo simples e preciso para análise do funcionamento de circuitos em tecnologia CMOS e para uma primeira aproximação do dimensionamento dos componentes por cálculos manuais. Para cada característica estática ou dinâmica do dispositivo, o modelo utiliza uma expressão única e contínua, com derivadas de qualquer ordem contínuas, válida em todos os regimes de inversão e nas regiões triodo e de saturação. O terminal de substrato é adotado como referência das tensões, como em [8], o que permite enfatizar a simetria do dispositivo de canal longo no que concerne à permuta entre dreno e fonte.

É um modelo que respeita a conservação da carga, pois é baseado numa relação incrementalmente linear entre o potencial de superfície e a densidade de carga de inversão em qualquer ponto do canal. Assim, todas as características estáticas e dinâmicas são expressas em termos das densidades de carga de inversão nos extremos do canal próximos à fonte e ao dreno. Como estas últimas podem ser biunivocamente relacionadas às componentes de saturação direta e reversa, respectivamente, da corrente de dreno, as expressões podem ser reescritas em termos destas variáveis, o que convém aos projetistas de circuito.

Considerando um MOSFET de canal longo, a corrente de dreno no modelo ACM é dada por:

$$i_D = I_S(i_f - i_r) \tag{2.3a}$$

onde I_S é a corrente de normalização, ou específica, e $i_{f(r)}$ é a componente de saturação direta (reversa) normalizada da corrente de dreno [9] [10], que é função das tensões terminais, tal que desvanece para $V_{SB(DB)}$ tendendo a valores muito grandes. Assim, num MOSFET em saturação direta, (2.3a) pode ser abreviada para:

$$i_D = I_S i_f \tag{2.3b}$$

A componente *i_f* é também denominada nível de inversão.

I_S é dada por:

$$I_S = \mu C'_{ox} \frac{\phi_t^2 W}{2L} = I_{ssq} \frac{W}{L}$$
 (2.4)

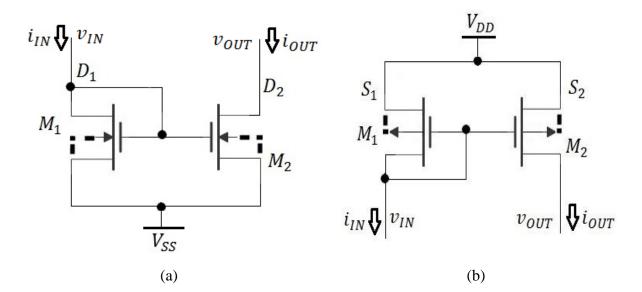
onde μ é a mobilidade dos portadores de carga, C'_{ox} é a capacitância do óxido por unidade de área, W e L são a largura e o comprimento, respectivamente, do canal de inversão, e I_{Ssq} é a corrente específica do transistor quadrado (com W = L).

As relações entre as componentes i_f e i_r e as tensões terminais derivam do modelo unificado de controle de carga (UCCM: Unified Charge Control Model) [11] e são descritas pelas expressões:

$$\frac{V_P - V_{SB}}{\phi_t} = \pm \left[\sqrt{1 + i_f} - 2 + \ln(\sqrt{1 + i_f} - 1) \right] = \pm f(i_f)$$
 (2.5a)

$$\frac{v_{P} - v_{DB}}{\phi_t} = \pm \left[\sqrt{1 + i_r} - 2 + \ln(\sqrt{1 + i_r} - 1) \right] = \pm f(i_r)$$
 (2.5b)

onde V_P é aproximada por (2.1). Em (2.5), o sinal menos do lado direito da igualdade é para dispositivos canal P.


2.3. ESPELHOS DE CORRENTE

Espelhos de correntes são circuitos que têm como principal função prover corrente de saída proporcional à corrente de entrada. Idealmente, pode-se citar que devem também apresentar baixo erro de espelhamento, baixa condutância de saída, alta condutância de entrada, baixo consumo de potência, ampla excursão de tensão de saída e ampla largura de banda [12].

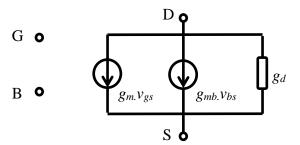
Diversas configurações de espelhos de corrente vêm sendo propostas ao longo do tempo [12]-[15]. Nesta seção é apresentada uma análise comparativa entre três delas: o espelho simples, o espelho cascode e o espelho de Ramirez-Angulo [15]. Como critérios para comparação de desempenho, adotamos: as condutâncias de entrada e saída, o erro de descasamento DC na razão de espelhamento e a excursão do sinal de tensão na saída. O objetivo desta análise é mostrar que apesar dos melhoramentos obtidos com configurações mais complexas que a do espelho simples, em termos de regulação e exatidão da razão de espelhamento, a excursão da tensão de saída resulta mais restrita que neste último, limitando a aplicação dos espelhos de melhor desempenho.

a) Espelho simples [14]

Neste espelho, ilustrado na Figura 2.5 nas versões canal N e canal P, M_1 opera em saturação por estar em conexão diodo (terminal de porta ligado ao de dreno) e M_2 deve também operar em saturação, o que impõe restrições à variação do potencial de saída v_{OUT} .

Figura 2.5. Espelho simples. (a) Canal *N*. (b) Canal *P*.

• A razão de espelhamento ideal é dada pela razão entre as razões de aspecto de M_2 e de M_1 (2.6):


$$\frac{i_{OUT}}{i_{IN}} = \frac{W_2/L_2}{W_1/L_1} \tag{2.6}$$

A razão entre as razões de aspecto dos transistores atua como um fator de escalamento da corrente, que pode ser controlado por dimensionamento dos transistores. Para se chegar a (2.6), observou-se que as tensões de porta, fonte e substrato de M_1 e M_2 são iguais entre si, assumiu-se que os parâmetros tecnológicos são iguais e desprezaram-se efeitos de segunda ordem, como o efeito Early.

• Segundo o modelo do MOSFET para operação com pequenos sinais em baixíssimas frequências, ilustrado na Figura 2.6, onde g_m é a transcondutância de porta, g_{mb} é a transcondutância de substrato e g_d é a condutância de dreno, a condutância de entrada do espelho simples é dada por:

$$g_{in} = \frac{i_{in}}{v_{in}} = g_{m1} + g_{d1} \cong g_{m1} \tag{2.7}$$

onde g_{m1} e g_{d1} são, respectivamente, a transcondutância de porta e a condutância de dreno de M_1 , esta última muito inferior que a primeira na região de saturação.

Figura 2.6. Modelo do MOSFET para operação com pequenos sinais em baixíssimas frequências.

• A condutância de saída, que responde pelo nível de regulação do espelho, ou seja, o quanto a corrente de saída varia com a tensão de entrada, é dada por:

$$g_{out} = \frac{i_{out}}{v_{out}} | i_{in=0} = g_{d2}$$
 (2.8)

sendo g_{d2} a condutância de dreno de M_2 .

• A excursão da tensão na saída, limitada pela necessidade de M_2 operar sempre na região de saturação, para o caso da versão canal N do espelho é dada por:

$$v_{OUT} > V_{DSSAT2} + V_{SS} = V_{P2} \tag{2.9}$$

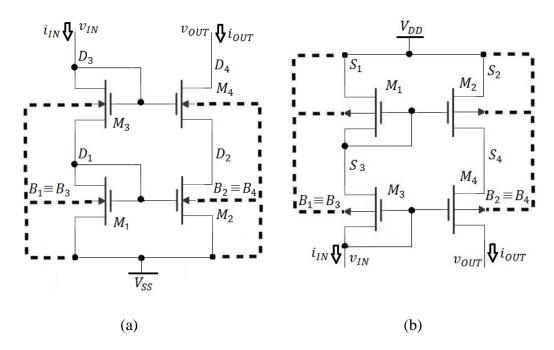
onde V_{DSSAT2} é o valor da tensão dreno-fonte no limiar de saturação de M_2 e V_{P2} é sua tensão de *pinch-off*.

• O erro de descasamento DC na razão de espelhamento representa o quanto a razão de espelhamento real se afasta da razão entre as razões de aspecto dos transistores de saída e entrada, sendo devido a descasamentos geométricos, tecnológicos e elétricos, estes últimos diretamente associados ao efeito Early. Admitindo que não há descasamentos geométricos ou entre os parâmetros tecnológicos, que de fato podem ser bastante minimizados por um leiaute apropriado do circuito integrado, o erro de descasamento DC no espelho simples é dado por:

$$\varepsilon = \frac{i_{out}}{i_{in}} \frac{W_1/L_1}{W_2/L_2} - 1 = \frac{(1+|v_{out}-V_{SS}|/V_{A2})}{(1+|v_{GS1}|/V_{A1})} - 1$$
(2.10a)

onde V_{A1} e V_{A2} são as tensões de Early de M_1 e M_2 , respectivamente. Assumindo que, para $L_1=L_2, V_{A1}=V_{A2}=V_A$:

$$\varepsilon = \frac{v_{out} - v_{in}}{V_A + V_{GS1}} \tag{2.10b}$$


De (2.10b), o erro depende da diferença entre as tensões de entrada e saída do espelho (descasamento elétrico).

b) Espelho cascode [14]

A configuração cascode, ilustrada na Figura 2.7 nas versões canal N e canal P, tem a proposta de reduzir a condutância de saída, proporcionando uma boa regulação. Isto é conseguido porque variações de tensão no terminal de dreno de M_2 devidas a variações de v_{out} produzem variações no nível de inversão de M_4 por efeito de corpo que atuam no sentido contrário sobre a corrente $i_{D1} = i_{D2} = i_{out}$, dessensibilizando-a em relação às variações do potencial de saída. Este mecanismo de regulação é possível desde que M_4 esteja operando em saturação, portanto com a corrente predominantemente

controlada pelas tensões porta-substrato e fonte-substrato. A simetria entre os ramos de entrada e saída do circuito garante um erro de descasamento DC muito baixo.

A razão de espelhamento ideal é dada pela mesma expressão, (2.6), que no caso do espelho simples.

Figura 2.7. Espelho cascode. (a) Canal *N*. (b) Canal *P*.

• A condutância de entrada do espelho cascode é dada por:

$$g_{in} = \frac{(g_{m3} + g_{d3})(g_{m1} + g_{d1})}{ng_{m3} + g_{d3} + g_{m1} + g_{d1}} \cong \frac{g_{m3}g_{m1}}{ng_{m3} + g_{m1}}$$
(2.11)

sendo n o fator de rampa do dispositivo canal N, aqui suposto constante, g_{m1} e g_{m3} as transcondutâncias de porta dos transistores M_1 e M_3 , respectivamente, e g_{d1} e g_{d3} suas correspondentes condutâncias de dreno.

Comparando (2.11) com (2.7), pode-se dizer que as condutâncias de entrada do espelho simples e do cascode são da mesma ordem de grandeza. Isto acontece porque as variações no potencial de entrada v_{IN} são transferidas para a porta de M_1 com muito pouca atenuação por meio do efeito de corpo em M_2 .

• A condutância de saída do espelho cascode é dada por:

$$g_{out} \cong g_{d2} \frac{g_{d4}}{ng_{m4}} \tag{2.12}$$

onde g_{d2} e g_{d4} são as condutâncias de dreno de M_2 e M_4 , respectivamente, e g_{m4} é a transcondutância de porta de M_4 .

Em (2.12), o termo $\frac{g_{d4}}{ng_{m4}}$ é o fator de atenuação (da ordem de 10^{-2} a 10^{-3}) da condutância de saída do espelho cascode em relação ao espelho simples (2.8).

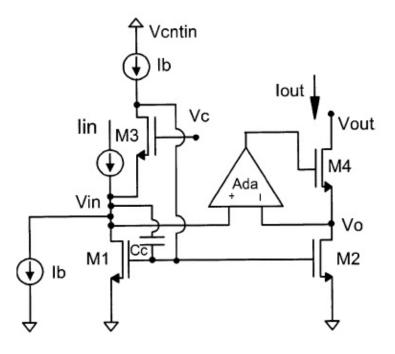
• No espelho cascode, a excursão da tensão de saída é limitada de modo que M_2 e M_4 operem em saturação. Assim, no caso da versão canal N:

$$v_{OUT} > V_{DSSAT4} + V_{DSSAT2} + V_{SS} \tag{2.13}$$

onde V_{DSSAT2} e V_{DSSAT4} são os valores da tensão dreno-fonte no limiar de saturação, para os transistores M_2 e M_4 , respectivamente.

Comparando (2.13) com (2.9), percebe-se que, no espelho cascode, há um aumento da tensão mínima necessária para o funcionamento adequado do circuito, em relação ao espelho simples. Ou seja, há uma diminuição na excursão de saída, o que é uma desvantagem. Tal diminuição é consequência do acréscimo de um transistor em série na saída, o que, por outro lado, foi responsável pela diminuição da condutância de saída, esta última uma vantagem da configuração cascode.

• O erro de descasamento DC na razão de espelhamento do espelho cascode, assumindo que, para $L_1=L_2$, $V_{A1}=V_{A2}=V_A$, é dado por:


$$\varepsilon = \frac{v_{GS3} - v_{GS4}}{v_A + v_{GS1}} \tag{2.14}$$

 $\operatorname{Como}\frac{W_4/L_4}{W_3/L_3} = \frac{W_2/L_2}{W_1/L_1}, \, v_{GS3} \cong v_{GS4}, \, \text{fazendo o erro ser muito pequeno no espelho cascode}.$

c) Espelho de Ramirez-Angulo [15]

Neste espelho, ilustrado na Figura 2.8 na versão canal N, são apresentadas melhorias em relação à configuração cascode, como o aumento da condutância de entrada, redução da condutância de saída e a redução do erro de espelhamento. Um amplificador diferencial (Ada) tem suas entradas ligadas aos drenos de M_1 e M_2 , proporcionando que as tensões dreno-fonte desses transistores sejam muito próximas [15]. Além disso, o amplificador diferencial sente as variações da tensão de saída V_{out} através das variações, delas resultantes, na tensão V_o , aplicada à sua entrada inversora, e responde de tal forma que a tensão na porta de M_4 varia no sentido contrário.

Assim, por exemplo, a corrente, que aumentaria por efeito Early pelo aumento de V_{out} , é regulada pela redução do nível de inversão de M_4 . Na entrada, variações em I_{in} não produzem variações tão significativas em V_{in} , apesar do efeito Early em M_1 , porque o efeito de corpo em M_3 , que possui corrente de dreno e tensão de porta constantes, deve ser compensado por uma variação de seu potencial de dreno no mesmo sentido que V_{in} , o que faz o nível de inversão de M_1 variar no sentido de se acomodar às variações de I_{in} .

Figura 2.8. Espelho de Ramírez-Angulo. Extraída de [15].

• A condutância de entrada do espelho de Ramirez-Angulo é dada por:

$$g_{in} \cong ng_{m1} \frac{g_{m3}}{g_{d3}} \tag{2.15}$$

Em (2.15), o termo $\frac{g_{m3}}{g_{d3}}$ representa um ganho da ordem de 10^2 a 10^4 em relação à condutância de entrada dos espelhos simples e cascode.

• A condutância de saída do espelho de Ramirez-Angulo é dada por:

$$g_{out} \cong \frac{g_{d2}g_{d4}}{(A+n)g_{m4}}$$
 (2.16)

onde A é o ganho do amplificador diferencial.

Em (2.16), como no espelho cascode, a razão $\frac{g_{d4}}{g_{m4}}$ é da ordem de 10^{-2} a 10^{-4} . Se o ganho A for elevado, a condutância de saída é bem inferior que na configuração cascode clássica.

- No espelho de Ramirez-Angulo, a excursão da tensão de saída é limitada de modo que M_2 e M_4 operem em saturação, como no espelho cascode, sendo, portanto, semelhante à deste.
- O erro de descasamento DC na razão de espelhamento do espelho de Ramirez-Angulo , considerando $L_1=L_2$, portanto $V_{A1}=V_{A2}=V_A$, é:

$$\varepsilon = \frac{v_{DS2} - v_{DS1}}{V_A + V_{DS1}} \tag{2.17a}$$

Explorando o circuito interno do amplificador Ada, ilustrado na Figura 2.9, percebe-se que $v_{DS2}=v_{G6}-V_{SS}$ e $v_{DS1}=v_{G5}-V_{SS}$, logo:

$$\varepsilon = \frac{v_{G6} - v_{G5}}{v_A + v_{DS1}} \tag{2.17b}$$

Tendo M_5 e M_6 razões de aspecto iguais e sendo atravessados pela mesma corrente $I_{bias}/2$, seus potenciais de porta seguem um ao outro e o erro de descasamento DC fica muito reduzido.

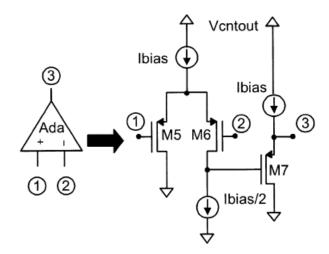


Figura 2.9. Amplificador diferencial Ada. Extraída de [15].

d) Exemplos de resultados comparativos

• A Figura 2.10 mostra uma tabela comparativa entre o espelho simples e o espelho cascode, apresentada por Aggarwal [14].

	Simple CM	Cascode CM
Mirroring accuracy ^a	Very poor	Very good
% Error ratio (PER) ^b	54.89	0.51
$V_{in,drop}^{\mathbf{a}}(V)$	0.5-0.95	1-1.8
$V_{out,min}^{\mathbf{a}}(V)$	0.1-0.4	0.5-0.9
Input resistance ^b (Ω)	4.5 k	9 k
Output resistance ^b (Ω)	200 k	14 M
Bandwidth ^b (Hz)	1.46 G	908.67 M
Peaking in frequency response ^b (dB)	Nil	Nil
Power consumed ^b (W)	33.12 μ	28.69 μ

 $^{^{\}text{a}}$ For input current range 0–500 μA .

Figura 2.10. Resultados comparativos para o espelho simples e o cascode. Extraída de[14].

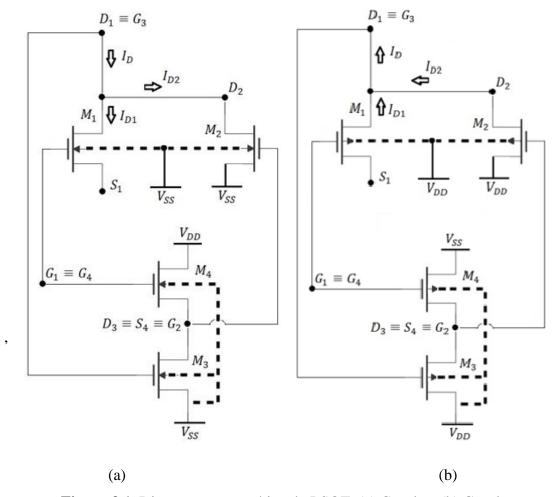
A Figura 2.10 corrobora algumas das análises apresentadas anteriormente, com destaque para a redução do erro de espelhamento e da condutância de saída (aumento considerável da resistência de saída) no espelho cascode comparado ao espelho simples. A faixa observada para a mínima tensão de saída (admitindo que são espelhos canal N) sofreu uma importante elevação no espelho cascode, o que já era esperado, como principal desvantagem deste espelho em relação ao espelho simples.

^b At input current=10 μ A.

A Tabela I mostra uma comparação entre os espelhos cascode e o de Ramirez-Angulo, simulados para uma tecnologia CMOS 130 nm, de comprimento mínimo igual a 120 nm, com $V_{DD} = -V_{SS} = 0,6$ V, utilizando o modelo BSIM 3v3 no simulador SMASH. Adotaram-se transistores canal N iguais em ambos circuitos, com $L = 0,5 \,\mu m \,e\,W = 0,9 \,\mu m$; $i_{in} = 1,5 \,\mu A$. O parâmetro v_{outmin} foi definido como o valor de v_{out} para o qual g_{out} corresponde a 8% de seu valor inicial. A condutância de saída média foi obtida a partir da média aritmética simples de todos os valores simulados desde $v_{out} = v_{outmin}$ até $v_{out} = V_{DD}$. A condutância de entrada média foi calculada como a média aritmética de todos os valores correspondentes a uma variação da corrente de entrada no intervalo entre $\pm 50\%$ em torno do valor de projeto.

Caractarística de Decembenho	Espelho	
Característica de Desempenho	Cascode	Ramirez-Angulo
Limite de excursão na saída v _{outmin} (volts)	-0.492	-0.306
Condutância de saída g_{out} média (S)	1,14x10 ⁻⁸	1,80x10 ⁻¹⁰
Condutância de entrada g_{in} média (S)	2,78x10 ⁻⁵	5,84x10 ⁻⁵
Erro de espelhamento (%) para $v_{out} = (V_{DD} + v_{outmin})/2$	-0,018	0,068

Tabela I. Comparação entre características simuladas do espelho cascode e do espelho de Ramirez-Angulo (tecnologia CMOS 130 nm).


Pode-se observar da Tabela I que a condutância de saída do espelho de Ramirez-Angulo foi drasticamente reduzida em relação à do espelho cascode e a condutância de entrada mais que dobrou. Em compensação, o erro de espelhamento e o limite de excursão na saída resultaram piores para o espelho de Ramirez-Angulo.

Embora sejam resultados de simulação referentes a projetos particulares, a concepção do espelho de Ramirez-Ângulo não inclui nenhuma estratégia de melhoramento para a excursão da tensão na saída, apresentando inclusive um ramo de saída muito semelhante ao do espelho cascode, com dois transistores em série na região de saturação.

3. REDE PROPOSTA PARA DISPOSITIVO DE BAIXO LIMIAR DE SATURAÇÃO (LSOT)

Este capítulo contempla a principal contribuição deste trabalho de pesquisa que é a proposição de uma rede simples composta de quatro transistores e nenhum elemento de polarização, para operar em substituição a um único MOSFET, porém conferindo um limiar de saturação mais baixo. O princípio de operação da rede é descrito a seguir, à luz do modelo avançado compacto do MOSFET (modelo ACM).

A Figura 3.1 mostra o diagrama esquemático do circuito do LSOT canal N e do canal P, ou seja, do transistor equivalente canal N e canal P de baixa tensão de limiar de saturação, cujos terminais de porta, dreno e fonte são, respectivamente: G_1 , D_1 e S_1 .

Figura 3.1. Diagrama esquemático do LSOT. (a) Canal *N*. (b) Canal *P*.

A rede LSOT, como descrita em [17] e ilustrada na Fig. 3.1, é concebida para substituir um único transistor MOS que é igual ao transistor principal M_1 , proporcionando uma tensão de limiar de saturação mais baixa. Portanto, em aplicações que exigem o transistor MOS operando em saturação, como espelhos de corrente, o uso do LSOT possibilita uma excursão de tensão mais ampla. Como visto na Seção 2.1, para M_1 operar na região de saturação sua tensão dreno-fonte precisa ultrapassar um valor mínimo que, em inversão forte, depende do nível de inversão e, portanto, da tensão porta-substrato, podendo atingir valores elevados em inversão muito forte.

Enquanto operando na região triodo, a corrente de um transistor MOS difere do valor de saturação pelo valor da componente de saturação reversa, que depende da tensão dreno-substrato. Assim, na estrutura da Fig. 3.1, o transistor M_2 foi introduzido para prover uma corrente de mesmo valor que esta componente de saturação reversa e levar o conjunto a operar em saturação em um valor menor da tensão dreno-fonte.

O equacionamento desenvolvido a seguir, utilizando o formalismo do modelo ACM, revisitado na Seção 2.2, aprofunda a compreensão desta ideia e estabelece as condições de operação do transistor M_2 para que seja viável.

A corrente de dreno do LSOT é igual à soma das correntes de dreno de M_1 e de M_2 , na rede da Figura 3.1:

$$i_D = i_{D1} + i_{D2} (3.1a)$$

Supondo M₂ em saturação, de acordo com o modelo ACM:

$$i_{D2} = I_{S2}i_{f2}$$
 (3.1b)

Em M₁, para qualquer região de operação:

$$i_{D1} = I_{S1}(i_{f1} - i_{r1}) (3.1c)$$

Substituindo (3.1b) e (3.1c) em (3.1a):

$$i_D = I_{S1}i_{f1} - I_{S1}i_{r1} + I_{S2}i_{f2} (3.1d)$$

De (3.1d), para que o LSOT se comporte como um transistor em saturação, devemos ter:

$$I_{S1}i_{r1} = I_{S2}i_{f2} \tag{3.2a}$$

Admitindo que M₁ e M₂ tenham razões de aspecto iguais:

$$I_{S1} = I_{S2}$$
 (3.2b)

De (3.2a) e (3.2b):

$$i_{r1} = i_{f2} (3.3)$$

Segundo as expressões (2.5) do modelo ACM:

$$V_{P1} - V_{DB1} = \phi_t f(i_{r1}) \tag{3.4a}$$

$$V_{P2} - V_{SB2} = \phi_t f(i_{f2}) \tag{3.4b}$$

Como $V_{SB2} = 0$:

$$V_{P2} = \phi_t f(i_{f2}) \tag{3.4c}$$

De (3.4a), (3.4c) e (3.3):

$$V_{P1} - V_{DB1} = V_{P2} (3.5)$$

Substituindo a aproximação (2.1) de V_P em (3.5):

$$\frac{V_{GB1} - V_{TON}}{n_N} - V_{DB1} = \frac{V_{GB2} - V_{TON}}{n_N} \qquad \Rightarrow \qquad V_{GB2} = V_{GB1} - n_N V_{DB1}$$
 (3.6)

A expressão (3.6) estabelece a condição por meio da qual a corrente de saturação reversa de M_1 pode ser teoricamente cancelada: deve-se aplicar uma tensão portasubstrato em M_2 igual a uma combinação linear das tensões porta-substrato e drenosubstrato de M_1 , próxima à diferença entre estas tensões. A rede formada pelos transistores M_3 e M_4 pretende suprir esta tensão de forma aproximada. Como M_3 e M_4 estão em série:

$$i_{D3} = i_{D4}$$
 (3.7a)

Devemos assumir que M_3 e M_4 operam em saturação e que tenham razões de aspecto iguais para que esses dois transistores tenham níveis de inversão praticamente iguais. Assim:

$$I_{S3} = I_{S4}$$
 (3.7b)

$$V_{P3} = \phi_t f(i_{f3}) \tag{3.7c}$$

$$V_{P4} - V_{SB4} = \phi_t f(i_{f4}) \tag{3.7d}$$

De (3.7a) e (3.7b):

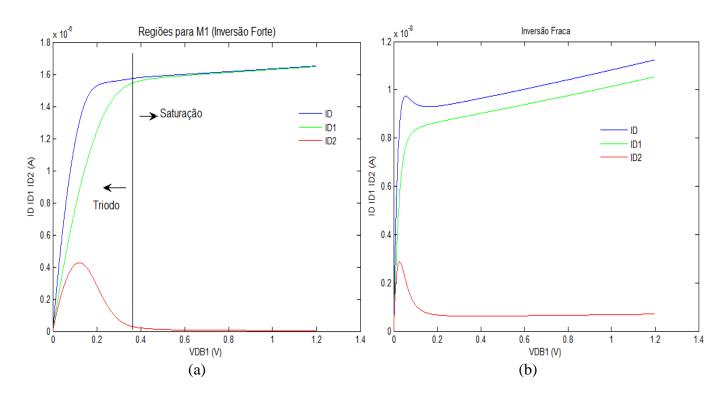
$$i_{f3} = i_{f4}$$
 (3.7e)

De (3.7c), (3.7d) e (3.7e):

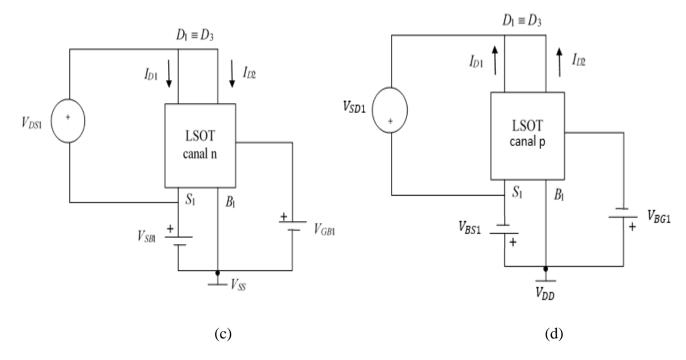
$$V_{P3} = V_{P4} - V_{SB4} \Rightarrow V_{SB4} = V_{P4} - V_{P3} = \frac{V_{GB4} - V_{TON}}{n_N} - \frac{V_{GB3} - V_{TON}}{n_N} \Rightarrow \\ \Rightarrow V_{SB4} = \frac{V_{GB4} - V_{GB3}}{n_N}$$
(3.8)

Do circuito, temos que: $V_{SB4} = V_{GB2}$; $V_{GB4} = V_{GB1}$; $V_{GB3} = V_{DB1}$. Então, de (3.8):

$$V_{GB2} = \frac{V_{GB1} - V_{DB1}}{n_N} \tag{3.9}$$


A equação (3.9), da mesma forma que (3.6), confirma o comportamento decrescente da tensão V_{GB2} quando tivermos um aumento em V_{DB1} . Quando M_3 tende a níveis de inversão mais fortes (com o aumento de $V_{DB1} = V_{GB3}$), a tensão $V_{SB4} = V_{DS3} = V_{GB2}$ tende a cair, para que o nível de inversão de M_4 acompanhe o de M_3 , como estabelecido em (3.7e). Assim, I_{D2} diminui, pelo enfraquecimento do nível de inversão de M_2 e I_D tende a I_{D1} para valores crescentes de V_{DB1} em saturação.

Para que o LSOT se comporte como um transistor único, mas com uma tensão de limiar de saturação V_{DSSAT} menor que a de um transistor simples (no caso, M_1), é necessário que, com M_1 ainda operando na região triodo, M_2 proporcione uma corrente de dreno que, somada a I_{D1} , resulte numa corrente I_D que tenda à saturação antes de I_{D1} . Por outro lado, o decaimento de I_{D2} , como já discutido, quando M_3 tender à inversão forte, não deve influenciar no valor de I_D , quando M_1 saturar, resultando em $I_D \cong I_{D1}$.


A operação aqui descrita é ilustrada na Figura 3.2, onde são apresentadas as correntes de dreno dos transistores M_1 e M_2 e a corrente de um LSOT canal N, obtidas por simulação, para uma variação da tensão dreno-fonte de M_1 , com $V_{GB1} = 0.5$ V (Figura 3.2(a)) e $V_{GB1} = 0.1$ V (Figura 3.2(b)), mantendo-se $V_{SB1} = 0.0$ Os "setups" utilizados para a simulação das características corrente-tensão para os casos dos transistores canal N e canal P são exibidas nas Figuras 3.3(a) e 3.3(b), respectivamente.

Pode-se perceber na Figura 3.2(b) que, se M_1 estiver operando em inversão fraca, a ordem de grandeza da corrente de M_2 não é desprezível comparada à de M_1 . Além disto, efeitos de segunda ordem que podem ficar muito mais pronunciados em inversão fraca, como é o caso de alguns efeitos de canal curto, não modelados pela versão básica do modelo ACM aqui utilizada, podem antecipar a saturação de M_1 .

Assim, a corrente de M_2 produz uma sobrecompensação, ocasionando distorção da característica resultante para o LSOT na transição entre região triodo e região de saturação. Entretanto, em inversão fraca a saturação do MOSFET, não mais associada ao fenômeno do estrangulamento do canal, ocorre a um valor de V_{DS} bastante baixo, da ordem de $4\phi_t$, independentemente da tensão porta-substrato aplicada. Portanto, não há necessidade de se utilizar a rede LSOT em substituição a um transistor único em inversão fraca.

Figura 3.2. (a) I_{D1} , I_{D2} e $I_D = I_{D1} + I_{D2}$ versus V_{DS1} , para $V_{GB1} = 0.5$ V e $V_{SB1} = 0$. (b) I_{D1} , I_{D2} e $I_D = I_{D1} + I_{D2}$ versus V_{DS1} , para $V_{GB1} = 0.1$ V e $V_{SB1} = 0$.

Figura 3.3. (a) "Setup" de simulação para LSOT canal N. (b) "Setup" de simulação para LSOT canal P.

4. VALIDAÇÃO DA REDE LSOT

Neste capítulo são apresentados vários resultados de simulação e alguns dados experimentais com o objetivo de mostrar que o LSOT de fato apresenta limiar de saturação mais baixo que o transistor que pretende substituir. As simulações foram realizadas por meio de uma versão de demonstração do *software* SMASH da Dolphin Integration, utilizando uma tecnologia CMOS de 130 nm. Os experimentos foram realizados utilizando transistores canal *N* do circuito integrado HCF4007 e a unidade de medição e fonte (SMU: *Source and Measure Unit*) U2723A da Agilent. Tanto os dados gerados por simulação como os obtidos experimentalmente foram posteriormente processados por meio do *software* matemático Matlab®.

4.1. SIMULAÇÕES DE CARACTERÍSTICAS DE LSOT

Com o intuito de gerar resultados preliminares sobre o desempenho do LSOT. foram levantadas características estáticas de saída para o LSOT canal N (P) isolado, utilizando o simulador SMASH e dispositivos de uma tecnologia CMOS 130 nm. As características se referem tanto à rede LSOT completa (corrente I_D versus tensão V_{DS1} (V_{SD1})) como individualmente aos transistores M_1 e M_2 que a compõem (correntes I_{D1} e I_{D2} versus V_{DS1} (V_{SD1})). Para tanto, foram utilizados os "setups" de simulação ilustrados na Figura 3.3(a) para o canal N e na Figura 3.3(b) para o canal P. Foram escolhidas três configurações de razões de aspecto para o tipo canal N, conforme especificado na Tabela II: na configuração denominada estreito curto, a largura de M_1 é a mínima da tecnologia, $W_{min} = 0.16 \,\mu\text{m}$, e o seu comprimento é 5/3 do comprimento mínimo $L_{min} = 0.12 \mu m$ da tecnologia; na configuração largo curto, W_1 é 125 vezes a largura mínima da tecnologia e L_1 é o mesmo que na configuração estreito curto; na configuração estreito longo, W₁ é 3,125 vezes a largura mínima e L₁ é 125/3 vezes o comprimento mínimo. Para o tipo canal P, foram escolhidas as configurações conforme a Tabela III. M_3 e M_4 foram mantidos, em todas as configurações, com razões de aspecto iguais entre si e fixas em todas as simulações (Tabela II e Tabela III). Foram adotados sete valores de V_{GB1} e três valores de V_{SB1} .

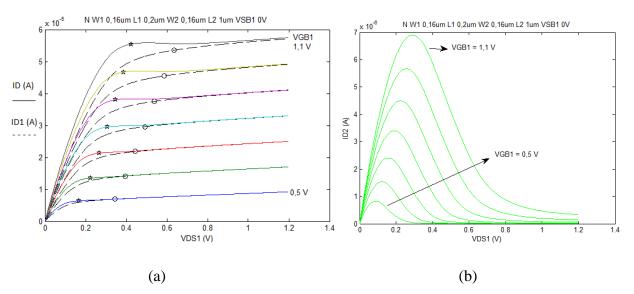
Cumpre notar que foram adotadas, de forma empírica, razões de aspecto para M_2 diferentes das de M_1 para obter na prática o cancelamento pretendido da componente de

saturação reversa de I_{D1} . Embora o princípio de operação do LSOT teoricamente aponte para a necessidade de razões de aspecto iguais entre estes dois transistores, na prática foi necessário fazer um ajuste empírico nas dimensões de M_2 para atenuar otimamente a componente de saturação reversa da corrente de M_1 , sem sobrecompensação. É razoável supor que estando operando em diferentes níveis de inversão, M_1 e M_2 apresentem diferenças nos efeitos de 2^a ordem, tais como degradação da mobilidade com o campo elétrico transversal e efeitos de canal curto, não representados no formalismo básico do modelo ACM utilizado para explicar o princípio do LSOT. Este problema merece uma investigação ulterior, fora do escopo deste trabalho.

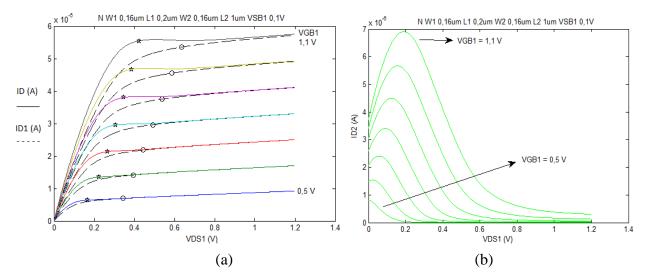
	Estreito curto	Largo curto	Estreito longo
W_1	0,16 μm	20 μm	0,5 μm
L_1	0,2 μm	0,2 μm	5 μm
W_2	0,16 μm	5 μm	0,16 μm
L_2	1 μm	0,16 μm	5 μm
$W_3 = W_4$	0,16 μm	0,16 μm	0,16 μm
$L_3 = L_4$	10 μm	10 μm	10 μm

Tabela II. Dimensões do LSOT canal *N*, utilizadas nas simulações.

	Quadrado	Razão de aspecto 2,5	Razão de aspecto 3,33
W_1	1 μm	5 μm	20 μm
L_1	1 μm	2 μm	6 μm
W_2	0,8 μm	2 μm	4 μm
L_2	1 μm	0,67 μm	1 μm
$W_3 = W_4$	0,16 μm	0,16 μm	0,16 μm
$L_3 = L_4$	10 μm	10 μm	10 μm


Tabela III. Dimensões do LSOT canal *P*, utilizadas nas simulações.

4.1.1. Características de saída de LSOT canal N


a) LSOT estreito curto (W_1 = 0,16 µm, L_1 = 0,2 µm, W_2 = 0,16 µm e L_2 = 1 µm) Foram traçados gráficos (Figuras 4.1 a 4.3) para 7 valores de V_{GB1} (0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V) e 3 valores de V_{SB1} (0 V; 0,1 V e 0,2 V) – Tabela IV.

		$V_{GB1} = 0.5 \text{ V a } 1.1 \text{ V}$
	0 V	Figura 4.1
V_{SB1}	0,1 V	Figura 4.2
	0,2 V	Figura 4.3

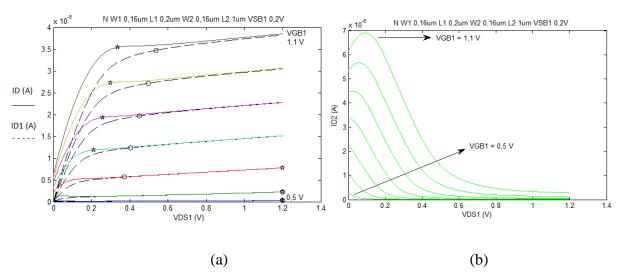

Tabela IV. Combinações das tensões V_{GB1} e V_{SB1} usadas nas simulações para o LSOT canal N estreito curto.

Figura 4.1. (a) I_D e I_{D1} versus V_{DS1} ; (b) I_{D2} versus V_{DS1} . LSOT na configuração: W_1 = 0,16 μm, L_1 = 0,2 μm, W_2 = 0,16 μm e L_2 = 1 μm, V_{GB1} = 0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V. V_{SB1} = 0 V.

Figura 4.2. (a) I_D e I_{D1} versus V_{DS1} ; (b) I_{D2} versus V_{DS1} . LSOT na configuração: W_1 = 0,16 μm, L_1 = 0,2 μm, W_2 = 0,16 μm e L_2 = 1 μm, V_{GB1} = 0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V. V_{SB1} = 0,1 V.

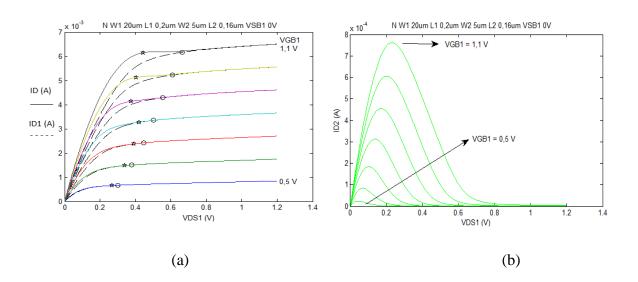
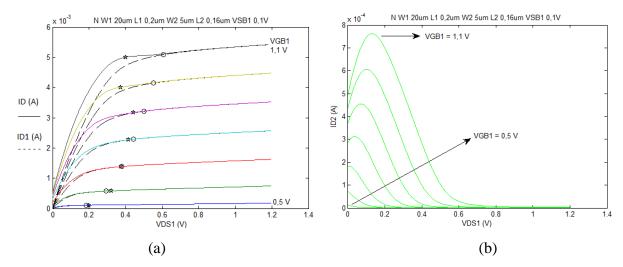


Figura 4.3. (a) I_D e I_{D1} versus V_{DS1} ; (b) I_{D2} versus V_{DS1} . LSOT na configuração: W_1 = 0,16 μm, L_1 = 0,2 μm, W_2 = 0,16 μm e L_2 = 1 μm, V_{GB1} = 0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V. V_{SB1} . = 0,2 V.


b) LSOT largo curto (W_1 = 20 μm, L_1 = 0,2 μm, W_2 = 5 μm e L_2 = 0,16 μm) Foram traçados gráficos (Figuras 4.4 a 4.6) para 7 valores de V_{GB1} (0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V) e 3 valores de V_{SB1} (0 V; 0,1 V e 0,2 V) – Tabela V.

		$V_{GB1} = 0.5 \text{ V a } 1.1 \text{ V}$
	0 V	Figura 4.4
V_{SB1}	0,1 V	Figura 4.5
	0,2 V	Figura 4.6

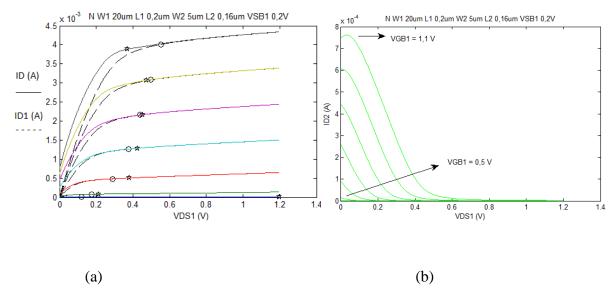

Tabela V. Combinações das tensões V_{GB1} e V_{SB1} usadas nas simulações para o LSOT canal N largo curto.

Figura 4.4. (a) I_D e I_{D1} versus V_{DS1} ; (b) I_{D2} versus V_{DS1} . LSOT na configuração: W_1 = 20 μm, L_1 = 0,2 μm, W_2 = 5 μm e L_2 = 0,16 μm, V_{GB1} = 0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V. V_{SB1} = 0 V.

Figura 4.5. (a) I_D e I_{D1} versus V_{DS1} ; (b) I_{D2} versus V_{DS1} . LSOT na configuração: W_1 = 20 μm, L_1 = 0,2 μm, W_2 = 5 μm e L_2 = 0,16 μm, V_{GB1} = 0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V. V_{SB1} = 0,1 V.

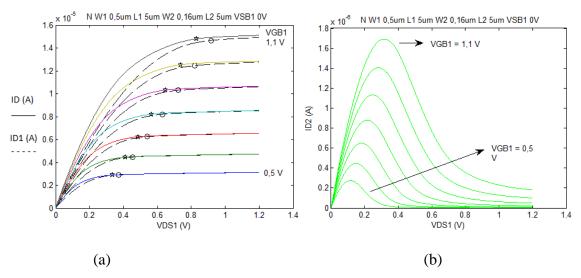
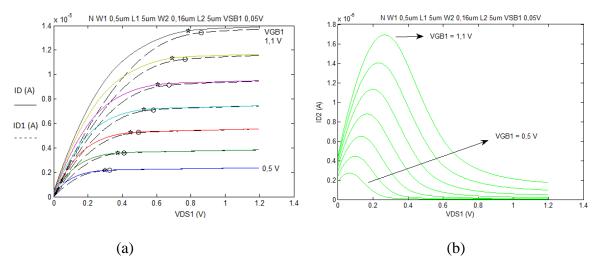


Figura 4.6. (a) I_D e I_{D1} versus V_{DS1} ; b) I_{D2} versus V_{DS1} . LSOT na configuração: W_1 = 20 μm, L_1 = 0,2 μm, W_2 = 5 μm e L_2 = 0,16 μm, V_{GB1} = 0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V. V_{SB1} = 0,2 V.


c) LSOT estreito longo (W_1 = 0,5 µm, L_1 = 5 µm, W_2 = 0,16 µm e L_2 = 5 µm) Foram traçados gráficos (Figuras 4.7 a 4.9) para 7 valores de V_{GB1} (0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V) e 3 valores de V_{SB1} (0 V; 0,05 V e 0,1 V) – Tabela VI.

		$V_{GB1} = 0.5 \text{ V a } 1.1 \text{ V}$
	0 V	Figura 4.7
V_{SB1}	0,05 V	Figura 4.8
	0,1 V	Figura 4.9

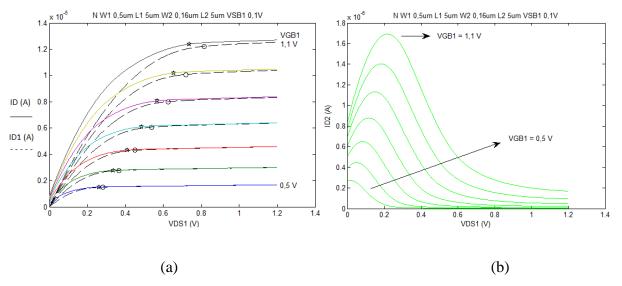
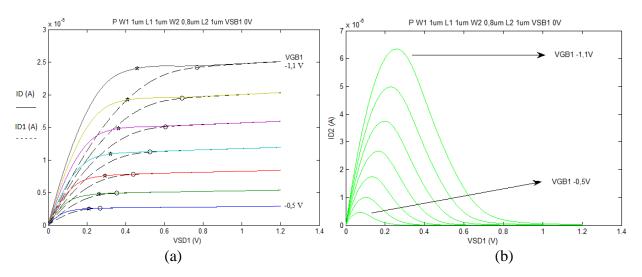
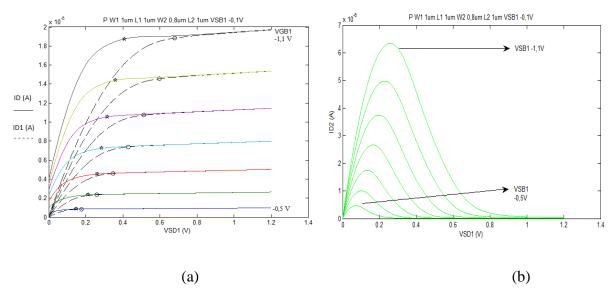

Tabela VI. Combinações das tensões V_{GB1} e V_{SB1} usadas nas simulações para o LSOT canal N estreito longo.

Figura 4.7. (a) I_D e I_{D1} versus V_{DS1} ; b) I_{D2} versus V_{DS1} . LSOT na configuração: W_1 = 0,5 μm, L_1 = 5 μm, W_2 = 0,16 μm e L_2 = 5 μm, V_{GB1} = 0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V. V_{SB1} = 0 V.

Figura 4.8. (a) I_D e I_{D1} versus V_{DS1} ; (b) I_{D2} versus V_{DS1} . LSOT na configuração: W_1 = 0,5 μm, L_1 = 5 μm, W_2 = 0,16 μm e L_2 = 5 μm, V_{GB1} = 0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V. V_{SB1} = 0,05 V.


Figura 4.9. (a) I_D e I_{D1} versus V_{DS1} ; (b) I_{D2} versus V_{DS1} . LSOT na configuração: W_1 = 0,5 μm, L_1 = 5 μm, W_2 = 0,16 μm e L_2 = 5 μm, V_{GB1} = 0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V. V_{SB1} = 0,1 V.

4.1.2. Características de saída de LSOT canal *P*


a) LSOT canal P (W_1 = 1 μ m, L_1 = 1 μ m, W_2 = 0,8 μ m e L_2 = 1 μ m) Foram traçados gráficos (Figuras 4.10 a 4.12) para 7 valores de V_{GB1} (-0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V) e 3 valores de V_{SB1} (0 V; -0,1 V e -0,2 V) – Tabela VII.

		$V_{GB1} = -0.5 \text{ V a } -1.1 \text{ V}$
	0 V	Figura 4.10
V_{SB1}	-0,1 V	Figura 4.11
	-0,2 V	Figura 4.12

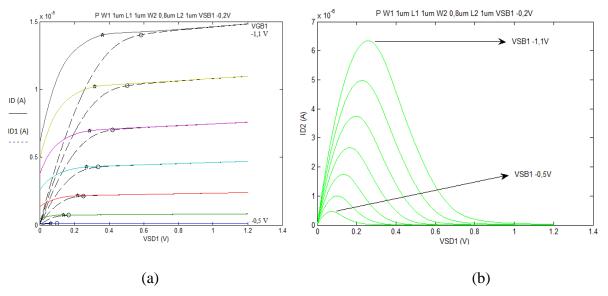

Tabela VII: Combinações das tensões V_{GB1} e V_{SB1} usadas nas simulações para o LSOT canal P (W_1 = 1 μ m, L_1 = 1 μ m, W_2 = 0,8 μ m e L_2 = 1 μ m).

Figura 4.10. (a) I_D e I_{D1} versus V_{SD1} ; (b) I_{D2} versus V_{SD1} . LSOT na configuração: W_1 = 1 μm, L_1 = 1 μm, W_2 = 0,8 μm e L_2 = 1 μm, V_{GB1} = -0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V. V_{SB1} = 0 V.

Figura 4.11. (a) I_D e I_{D1} versus V_{SD1} ; (b) I_{D2} versus V_{SD1} . LSOT na configuração: W_1 = 1 μm, L_1 = 1 μm, W_2 = 0,8 μm e L_2 = 1 μm, V_{GB1} = -0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V. V_{SB1} = -0,1 V.

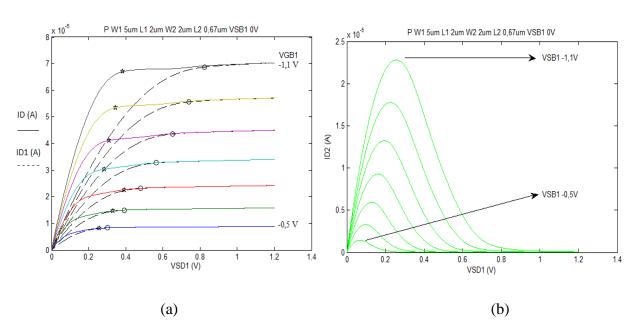
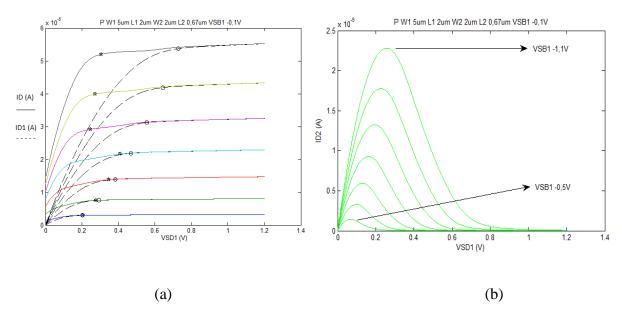


Figura 4.12. (a) I_D e I_{D1} versus V_{SD1} ; (b) I_{D2} versus V_{SD1} . LSOT na configuração: W_1 = 1 μm, L_1 = 1 μm, W_2 = 0,8 μm e L_2 = 1 μm, V_{GB1} = -0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V. V_{SB1} = -0,2 V.


b) LSOT canal P (W_1 = 5 μ m, L_1 = 2 μ m, W_2 = 2 μ m e L_2 = 0,67 μ m) Foram traçados gráficos (Figuras 4.13 a 4.15) para 7 valores de V_{GB1} (-0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V) e 3 valores de V_{SB1} (0 V; -0,1 V e -0,2 V) – Tabela VIII.

		$V_{GB1} = -0.5 \text{ V a } -1.1 \text{ V}$
	0 V	Figura 4.13
V_{SB1}	-0,1 V	Figura 4.14
	-0,2 V	Figura 4.15

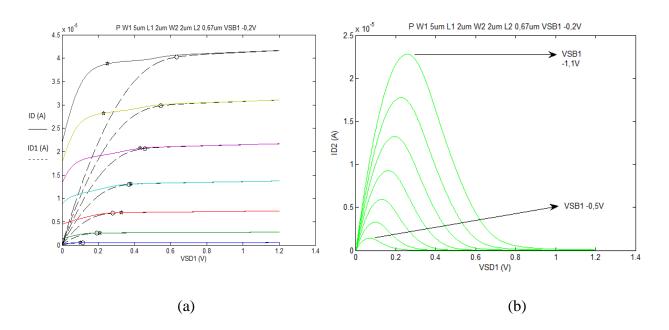

Tabela VIII: Combinações das tensões V_{GB1} e V_{SB1} usadas nas simulações para o LSOT canal P (W_1 = 5 μ m, L_1 = 2 μ m, W_2 = 2 μ m e L_2 = 0,67 μ m).

Figura 4.13. (a) I_D e I_{D1} versus V_{SD1} ; (b) I_{D2} versus V_{SD1} . LSOT na configuração: W_1 = 5 μm, L_1 = 2 μm, W_2 = 2 μm e L_2 = 0,67 μm, V_{GB1} = -0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V. V_{SB1} = 0 V.

Figura 4.14. (a) I_D e I_{D1} versus V_{SD1} ; (b) I_{D2} versus V_{SD1} . LSOT na configuração: W_1 = 5 μm, L_1 = 2 μm, W_2 = 2 μm e L_2 = 0,67 μm, V_{GB1} = -0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V. V_{SB1} = -0,1 V.

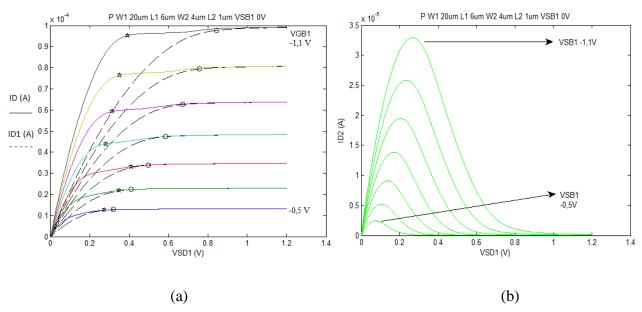
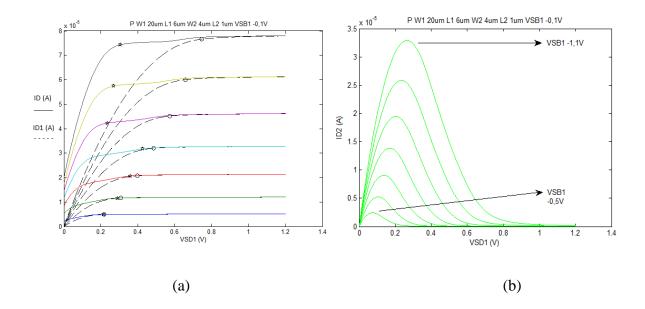


Figura 4.15. (a) I_D e I_{D1} versus V_{SD1} ; (b) I_{D2} versus V_{SD1} . LSOT na configuração: W_1 = 5 μm, L_1 = 2 μm, W_2 = 2 μm e L_2 = 0,67 μm, V_{GB1} = -0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V. V_{SB1} = -0,2 V.


c) LSOT canal P (W_1 = 20 μ m, L_1 = 6 μ m, W_2 = 4 μ m e L_2 = 1 μ m) Foram traçados gráficos (Figuras 4.16 a 4.18) para 7 valores de V_{GB1} (-0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V) e 3 valores de V_{SB1} (0 V; -0,1 V e -0,2 V) – Tabela IX.

		$V_{GB1} = -0.5 \text{ V a } -1.1 \text{ V}$
	0 V	Figura 4.16
V_{SB1}	-0,1 V	Figura 4.17
	-0,2 V	Figura 4.18

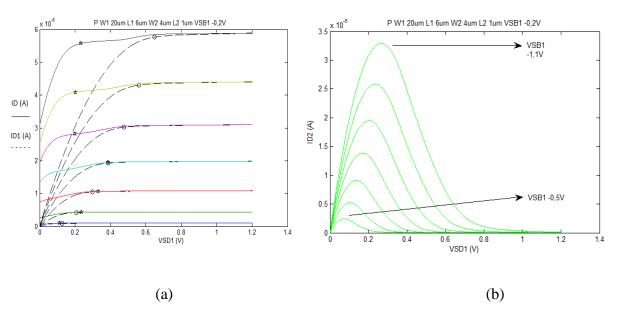

Tabela IX: Combinações das tensões V_{GB1} e V_{SB1} usadas nas simulações para o LSOT canal P (W_1 = 20 μ m, L_1 = 6 μ m, W_2 = 4 μ m e L_2 = 1 μ m).

Figura 4.16. (a) I_D e I_{D1} versus V_{SD1} ; (b) I_{D2} versus V_{SD1} . LSOT na configuração: W_1 = 20 μm, L_1 = 6 μm, W_2 = 4 μm e L_2 = 1 μm, V_{GB1} = -0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V. V_{SB1} = 0 V.

Figura 4.17. (a) I_D e I_{D1} versus V_{SD1} ; b) I_{D2} versus V_{SD1} . LSOT na configuração: W_1 = 20 μm, L_1 = 6 μm, W_2 = 4 μm e L_2 = 1 μm, V_{GB1} = -0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V. V_{SB1} = -0,1 V.

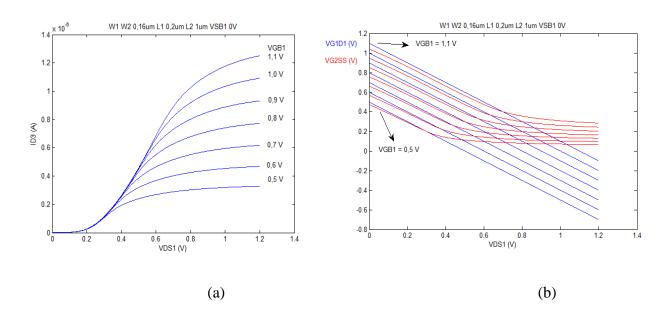


Figura 4.18. (a) I_D e I_{D1} versus V_{SD1} ; b) I_{D2} versus V_{SD1} . LSOT na configuração: W_1 = 20 μm, L_1 = 6 μm, W_2 = 4 μm e L_2 = 1 μm, V_{GB1} = -0,5 V; -0,6 V; -0,7 V; -0,8 V; -0,9 V; -1,0 V e -1,1 V. V_{SB1} = -0,2 V.

4.1.3. Características da rede M_3 - M_4

Foram traçados os gráficos de I_{D3} , V_{GD1} e V_{GB2} versus V_{DS1} , referentes ao LSOT canal N estreito curto (W_1 = 0,16 μ m, L_1 = 0,2 μ m, W_2 = 0,16 μ m e L_2 = 1 μ m) com V_{GB1} = 1 V e V_{SB1} = 0 V. O objetivo é mostrar a variação do nível de inversão de M_3 com o aumento de V_{DS1} , ao mesmo tempo que a tensão V_{DS3} = V_{GB2} decresce (Figura 4.19).

As características da Figura 4.19(b) refletem a razoável aproximação de (3.9) na região em que a atenuação da componente de saturação reversa da corrente de M_1 é necessária. A pequena diferença entre as inclinações das características correspondentes a V_{GD1} (curvas azuis) e V_{GB2} (curvas vermelhas) deve-se ao fator de rampa.

Figura 4.19. (a) I_{D3} versus V_{DS1} ; b) $V_{GD1} = V_{GB1} - V_{DB1}$ e V_{GB2} versus V_{DS1} . LSOT na configuração: W_1 = 0,16 μm, L_1 = 0,2 μm, W_2 = 0,16 μm e L_2 = 1 μm, V_{GB1} = 0,5 V; 0,6 V; 0,7 V; 0,8 V; 0,9 V; 1,0 V e 1,1 V e V_{SB1} = 0 V.

4.1.4. Tensão de limiar de saturação das redes LSOT simuladas

Para verificar se e quanto as redes LSOT simuladas podem contribuir para a antecipação do limiar de saturação, foi estabelecido um critério para a determinação dos valores da tensão de limiar de saturação V_{DSSAT1} e V_{DSSATL} , respectivamente do transistor M_1 e do LSOT: $V_{DSSAT1(L)}$ é considerada igual ao valor de V_{DS} para o qual a inclinação da característica do dispositivo atinge 5% do valor correspondente a $V_{DS} = 0$. Note-se que para um transistor individual, esta definição equivale ao valor em que a transcondutância de dreno g_{md} é 5% da transcondutância de fonte g_{ms} . Os valores assim extraídos de $V_{DSSAT1(L)}$ para os dispositivos canal P foram assinalados por meio de círculos (pentagramas) nos gráficos das Figuras 4.1 a 4.18.

Foram preenchidas seis tabelas (Tabelas X a XV) para mostrar os valores das tensões de limiar de saturação tanto para o MOSFET M_1 , quanto para o respectivo LSOT. Foram utilizadas as configurações dos itens 4.1.1 e 4.1.2 com os sete valores de V_{GB1} e os três valores de V_{SB1} .

	Estrei	Estreito curto: $W_1 = 0.16 \mu \text{m}$, $L_1 = 0.2 \mu \text{m}$, $W_2 = 0.16 \mu \text{m}$ e $L_2 = 1 \mu \text{m}$, canal N						
	V_{SB1}	= 0 V	$V_{SB1} = 0.1 \text{ V}$		$V_{SB1} = 0.2 \text{ V}$			
	V_{DSSAT1}	V_{DSSATL}	V_{DSSAT1}	V_{DSSATL}	V_{DSSAT1}	V_{DSSATL}		
$V_{GB1}=0.5 \text{ V}$	0,344 V	0.167 V						
$V_{GB1} = 0.6 \text{ V}$	0,397 V	0.224 V	0,354 V	0,151V				
$V_{GB1}=0.7 \text{ V}$	0,445 V	0.268 V	0,396 V	0,215 V				
$V_{GB1}=0.8 \text{ V}$	0,493 V	0.308 V	0,446 V	0,261 V	0,404 V	0,211 V		
$V_{GB1} = 0.9 \text{V}$	0,538 V	0,347 V	0,494 V	0,301 V	0,450 V	0,258 V		
$V_{GB1} = 1.0 \text{ V}$	0,587 V	0.386 V	0,541 V	0,340 V	0,496 V	0,299 V		
$V_{GB1} = 1.1 \text{ V}$	0,636 V	0.424 V	0,589 V	0,378 V	0,539 V	0,336 V		

Tabela X. Valores de V_{DSSAT} para M_1 (V_{DSSAT1}) e para o LSOT (V_{DSSATL}): W_1 = 0,16 μ m, L_1 = 0,2 μ m, W_2 = 0,16 μ m e L_2 = 1 μ m. Canal N.

	Lar	Largo curto: W_1 = 20 μ m, L_1 = 0,2 μ m, W_2 = 5 μ m e L_2 = 0,16 μ m, canal N					
	V_{SB1}	= 0 V	V_{SB1} =	= 0,1 V	$V_{SB1} = 0.2 \text{ V}$		
	V_{DSSAT1}	V_{DSSATL}	V_{DSSAT1}	V_{DSSATL}	V_{DSSAT1}	V_{DSSATL}	
$V_{GB1} = 0.5 \text{ V}$	0.301 V	0,267 V	0,183 V	0,198 V			
$V_{GB1} = 0.6 \text{ V}$	0.380 V	0,339 V	0,295 V	0,321 V	0,175 V	0,214 V	
$V_{GB1} = 0.7 \text{ V}$	0.446 V	0,393 V	0,378 V	0,375 V	0,289 V	0,378 V	
$V_{GB1}=0.8~\mathrm{V}$	0.503 V	0,420 V	0,444 V	0,415 V	0,375 V	0,425 V	
$V_{GB1} = 0.9V$	0.554 V	0,374 V	0,501 V	0,442 V	0,440 V	0,452 V	
$V_{GB1} = 1.0 \text{ V}$	0.608 V	0,403 V	0,553 V	0,372 V	0,499 V	0,474 V	
$V_{GB1} = 1,1 \text{ V}$	0.663 V	0,444 V	0,607 V	0,400 V	0,553 V	0,370 V	

Tabela XI. Valores de V_{DSSAT} para M_1 (V_{DSSAT1}) e para o LSOT (V_{DSSATL}):: W_1 = 20 μm, L_1 = 0,2 μm, W_2 = 5 μm e L_2 = 0,16 μm. Canal N.

	Estr	Estreito longo: W_1 = 0,5 μ m, L_1 = 5 μ m, W_2 = 0,16 μ m e L_2 = 5 μ m, canal N						
	V_{SB1}	= 0 V	$V_{SB1} = 0.05 \text{ V}$		$V_{SB1} = 0.1 \text{ V}$			
	V_{DSSAT1}	V_{DSSATL}	V_{DSSAT1}	V_{DSSATL}	V_{DSSAT1}	V_{DSSATL}		
$V_{GB1}=0.5 \text{ V}$	0,370 V	0,335 V	0,327 V	0,299 V	0,281 V	0,262 V		
$V_{GB1} = 0.6 \text{ V}$	0,455 V	0,411 V	0,410 V	0,374 V	0,365 V	0,337 V		
$V_{GB1}=0.7 \text{ V}$	0,540 V	0,486 V	0,495 V	0,448 V	0,450 V	0,411 V		
$V_{GB1}=0.8 \text{ V}$	0,629 V	0,566 V	0,582 V	0,525 V	0,537 V	0,486 V		
$V_{GB1} = 0.9 \text{V}$	0,724 V	0,648 V	0,672 V	0,607 V	0,625 V	0,566 V		
$V_{GB1} = 1.0 \text{ V}$	0,821 V	0,737 V	0,765 V	0,692 V	0,719 V	0,654 V		
$V_{GB1} = 1.1 \text{ V}$	0,918 V	0,831 V	0,859 V	0,785 V	0,814 V	0,737 V		

Tabela XII. Valores de V_{DSSAT} para M_1 (V_{DSSAT1}) e para o LSOT (V_{DSSATL}): W_1 = 0,5 μm, L_1 = 5 μm, W_2 = 0,16 μm e L_2 = 5 μm. Canal N.

	W_1 = 1 µm, L_1 = 1 µm, W_2 = 0,8 µm e L_2 = 1 µm, canal P						
	V_{SB1}	= 0 V	$V_{SB1} =$	-0,1 V	$V_{SB1} = -0.2 \text{ V}$		
	V_{SDSAT1}	V_{SDSATL}	V_{SDSAT1}	V_{SDSATL}	V_{SDSAT1}	V_{SDSATL}	
$V_{GB1} = -0.5 \text{ V}$	0,269 V	0,210 V	0,269 V	0,210 V	0,247 V	0,190 V	
$V_{GB1} = -0.6 \text{ V}$	0,355 V	0,263 V	0,355 V	0,263 V	0,327 V	0,252 V	
$V_{GB1} = -0.7 \text{ V}$	0,439 V	0,293 V	0,439 V	0,293 V	0,417 V	0,313 V	
$V_{GB1} = -0.8 \text{ V}$	0,524 V	0,324 V	0,524 V	0,324 V	0,507 V	0,361 V	
$V_{GB1} = -0.9V$	0,605 V	0,365 V	0,605 V	0,365 V	0,593 V	0,408 \v	
$V_{GB1} = -1.0 \text{ V}$	0,691 V	0,411 V	0,691 V	0,411 V	0,677 V	0,458 V	
$V_{GB1} = -1,1 \text{ V}$	0,770 V	0,461 V	0,770 V	0,461 V	0,761 V	0,511 V	

Tabela XIII. Valores de V_{SDSAT} para M_1 (V_{SDSAT1}) e para o LSOT (V_{SDSATL}): W_1 = 1 μm, L_1 = 1 μm, W_2 = 0,8 μm e L_2 = 1 μm. Canal P.

		W_1 = 5 µm, L_1 = 2 µm, W_2 = 2 µm e L_2 = 0,67 µm, canal P						
	V_{SB1}	= 0 V	$V_{SB1} =$	$V_{SB1} = -0.1 \text{ V}$		-0,2 V		
	V_{SDSAT1}	V_{SDSATL}	V_{SDSAT1}	V_{SDSATL}	V_{SDSAT1}	V_{SDSATL}		
$V_{GB1} = -0.5 \text{ V}$	0,303 V	0,259 V	0,276 V	0,236 V	0,263 V	0,212 V		
$V_{GB1} = -0.6 \text{ V}$	0,392 V	0,330 V	0,372 V	0,314 V	0,351 V	0,288 V		
$V_{GB1} = -0.7 \text{ V}$	0,479 V	0,391 V	0,463 V	0,379 V	0,448 V	0,351 V		
$V_{GB1} = -0.8 \text{ V}$	0,565 V	0,285 V	0,554 V	0,289 V	0,541 V	0,286 V		
$V_{GB1} = -0.9V$	0,651 V	0,311 V	0,642 V	0,316 V	0,632 V	0,319 V		
$V_{GB1} = -1.0 \text{ V}$	0,738 V	0,346 V	0,729 V	0,352 V	0,721 V	0,357 V		
$V_{GB1} = -1,1 \text{ V}$	0,823 V	0,384 V	0,817 V	0,390 V	0,809 V	0,397 V		

Tabela XIV. Valores de V_{SDSAT} para M_1 (V_{SDSAT1}) e para o LSOT (V_{SDSATL}): W_1 = 5 μm, L_1 = 2 μm, W_2 = 2 μm e L_2 = 0,67 μm. Canal P.

		W_1 = 20 µm, L_1 = 6 µm, W_2 = 4 µm e L_2 = 1 µm, canal P						
	V_{SB1}	= 0 V	V_{SB1} =	= -0,1 V	$V_{SB1} =$	-0,2 V		
	V_{SDSAT1}	V_{SDSATL}	V_{SDSAT1}	V_{SDSATL}	V_{SDSAT1}	V_{SDSATL}		
$V_{GB1} = -0.5 \text{ V}$	0,320 V	0,274 V	0,294 V	0,248 V	0,276 V	0,204 V		
$V_{GB1} = -0.6 \text{ V}$	0,409 V	0,348 V	0,390 V	0,327 V	0,368 V	0,282 V		
$V_{GB1} = -0.7 \text{ V}$	0,497 V	0,410 V	0,483 V	0,386 V	0,466 V	0,241 V		
$V_{GB1} = -0.8 \text{ V}$	0,584 V	0,281 V	0,573 V	0,281 V	0,560 V	0,276 V		
$V_{GB1} = -0.9V$	0,671 V	0,315 V	0,662 V	0,316 V	0,651 V	0,316 V		
$V_{GB1} = -1.0 \text{ V}$	0,757 V	0,352 V	0,749 V	0,355 V	0,741 V	0,356 V		
$V_{GB1} = -1,1 \text{ V}$	0,843 V	0,391 V	0,838 V	0,394 V	0,830 V	0,397 V		

Tabela XV. Valores de V_{SDSAT} para M_1 (V_{SDSAT1}) e para o LSOT (V_{SDSATL}): W_1 = 20 μm, L_1 = 6 μm, W_2 = 4 μm e L_2 = 1 μm. Canal P.

4.1.5. Discussão

Os resultados das simulações do item 4.1, demonstraram que o valor do limiar de saturação foi reduzido com o uso do LSOT, substituindo um transistor comum, tanto na versão canal N, quanto canal P. Vale ressaltar que os melhores resultados foram obtidos para os maiores valores absolutos de tensão porta-substrato e os menores valores absolutos de tensão fonte-substrato, aplicadas ao transistor M_1 . Isto se deve ao fato de que essas tensões influenciam seu nível de inversão, visto em (2.1) e (2.5a). Assim, para níveis fracos de inversão, quando as correntes de dreno de M_1 e M_2 tendem a um comportamento exponencial, o limiar entre a região triodo e a região de saturação ocorre em valores baixos de $|V_{DS}|$, não sendo necessária uma estratégia para antecipá-lo. A aplicação do LSOT, portanto, justifica-se em níveis elevados de inversão.

Outro aspecto a se considerar nesta análise é a influência dos efeitos de canal curto sobre as características de saída, quando a corrente de dreno tende a não se estabilizar na região de saturação, com o aumento da tensão dreno-fonte. Quando estes efeitos são muito pronunciados, torna-se mais difícil identificar o limiar entre as regiões triodo e de saturação e, portanto, verificar a alteração produzida pelo uso do LSOT. É o que ocorre nos níveis de inversão mais fracos, ou seja, para os baixos valores de $|V_{GB}|$ e

os maiores valores de $|V_{SB}|$, quando alguns efeitos de canal curto, especialmente a repartição de carga ("charge sharing") e o DIBL ("drain induced barrier lowering"), afetam de maneira dramática o limiar de saturação e a variação da corrente na região de saturação. Nestes casos, pode ser inviável aplicar a definição aqui adotada para V_{DSSAT} pois a inclinação da característica nunca decai a 5% do valor correspondente a $V_{DS} = 0$. Por esta razão, alguns valores de V_{DSSAT} correspondentes aos dispositivos canal N estreito curto ou largo curto não puderam ser obtidos (Tabelas X e XI). Também por este motivo, uma vez que na tecnologia CMOS adotada os transistores canal P apresentam efeitos de canal curto ainda mais pronunciados que os canal N, optou-se neste trabalho por não utilizar dispositivos de canal P com comprimento inferior a 1 μ m.

4.2. RESULTADOS EXPERIMENTAIS

4.2.1. Metodologia de caracterização

A metodologia para obtenção de dados experimentais visando validar o conceito do LSOT consistiu de montagem da rede LSOT em placa de prototipagem utilizando transistores canal N de alguns exemplares do circuito integrado (CI) HCF4007. Este circuito compreende três inversores CMOS, cada qual formado por um transistor canal N e um transistor canal P conectados pelos terminais de porta, como ilustrado no esquemático da Figura 4.20, mas apenas os dispositivos canal N foram utilizados, observando que o componente de terminais 6 a 8 só poderia representar um dos transistores do LSOT cujos terminais de fonte e substrato estivessem conectados.

Três diferentes montagens do LSOT foram realizadas, variando o comprimento do transistor M_2 do LSOT, a fim de obter diferentes razões de aspecto. Na primeira montagem, o comprimento de M_2 foi considerado igual ao de M_1 ($L_2 = L_1$). Na segunda, $L_2 = 2L_1$ e na terceira, $L_2 = 3L_1$. Isto foi conseguido conectando fisicamente os terminais de dreno e fonte de dois ou três transistores, de modo que fossem associados em série, como exemplificado na Figura 4.21.

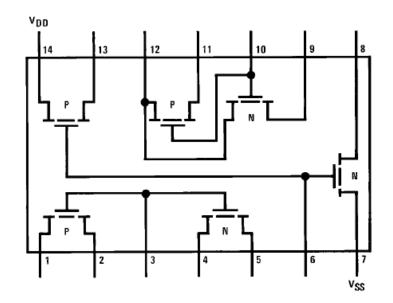
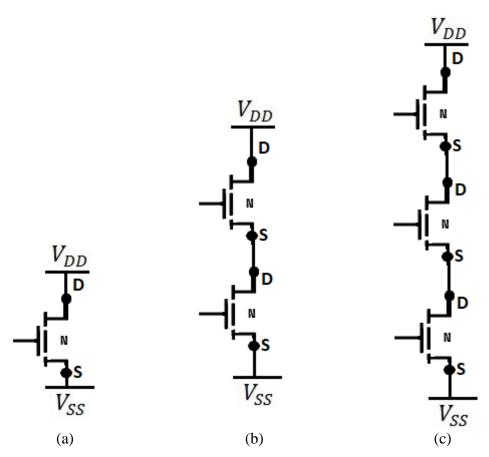
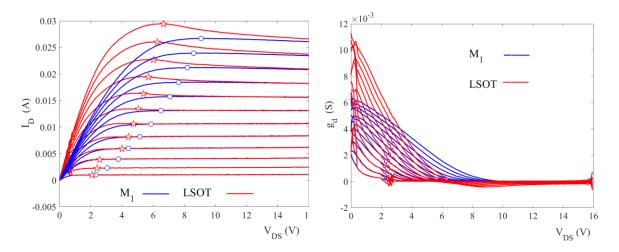
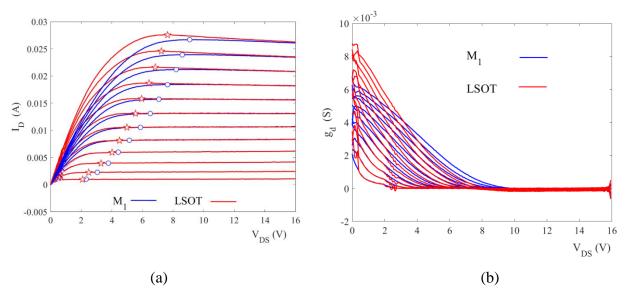



Figura 4.20. Diagrama esquemático do CI HCF4007. Extraído de [16]


Figura 4.21. Montagem ilustrativa do transistor M_2 do LSOT. (a) $L_2=L_1$. (b) $L_2=2L_1$. (c) $L_2=3L_1$.

Para a caracterização dos dispositivos de forma automatizada, foi utilizada a unidade de medição e fonte (SMU: *Source and Measure Unit*) U2723A da Agilent, que apresenta as seguintes especificações: 3 canais SMU; operação em quatro quadrantes nas faixas de ±20 V e ±120 mA; 0,1 mV de resolução para a faixa de ±2V; 1 mV de resolução para a faixa de ±20V; 0,1 mV de resolução para a faixa de ±10 µA; compatibilidade com USB 2.0 de alta velocidade e padrões USBTMC-USB488. Neste trabalho, foi utilizado também o acessório de teste paramétrico U2941A da Agilent, para conexão dos dispositivos sob teste, e foi elaborada uma rotina na linguagem SCPI (*Standard Commands for Programmable Instruments*: comandos padrões para instrumentos programáveis), para o controle e automatização da operação da U2723A no ambiente do *software* matemático Matlab ®.


4.2.2. Características medidas

Foram utilizados dois canais da SMU, um canal para variar em pequenos passos a tensão dreno-fonte V_{DS1} do transistor M_1 e para ler a corrente I_D do LSOT (soma das correntes de dreno de M_1 e M_2) e outro para variar a tensão porta-substrato de M_1 em passos maiores. Adotou-se $V_{DD}=16$ V e $V_{SS}=0$. Desta forma, foram levantadas características estáticas de saída (I_D versus V_{DS1}), para o LSOT canal N, com V_{GB1} variando de 3 a 14 V com passo de 1 V, mantendo-se $V_{SB1}=0$. Também foram levantadas as características I_{D1} versus V_{DS1} do transistor M_1 , tomado isoladamente. Os gráficos referentes a essas medições estão mostrados nas Figuras 4.22 a 4.24. Nestas figuras também são apresentadas as curvas de variação da condutância de dreno g_d com a tensão V_{DS1} , obtidas por diferenciação das características medidas. Os valores de V_{DSSATL} (círculos) e V_{DSSATL} (pentagramas) assinalados nas características foram determinados seguindo o mesmo critério descrito na Seção 4.1.4.

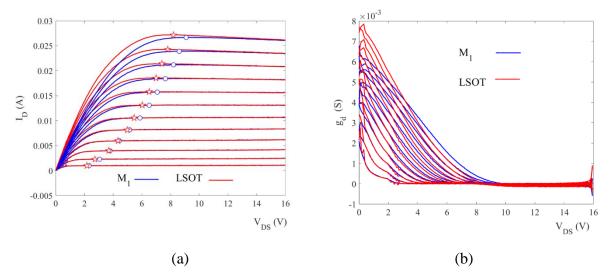

Vale ressaltar que as dimensões dos transistores do CI HCF4007, para esta caracterização, não são relevantes, mas sim a mudança do comprimento de M_2 do LSOT, e consequente alteração da razão de aspecto de M_2 , possibilitada pela montagem do circuito, como já mencionado.

Figura 4.22. Medidas referentes ao LSOT com $L_2 = L_1$. a) Características correntetensão de saída (azul: M_1 , vermelha: LSOT); V_{DSSAT1} (círculos); V_{DSSATL} (pentagramas).(b) Condutância de saída (azul: M_1 , vermelha: LSOT). V_{GB1} varia de 3 a 14 V com passo de 1 V e $V_{SB1} = 0V$.

Figura 4.23. Medidas referentes ao LSOT com $L_2=2L_1$. (a) Características correntetensão de saída (azul: M_1 , vermelha: LSOT); V_{DSSAT1} (círculos); V_{DSSATL} (pentagramas). (b) Condutância de saída (azul: M_1 , vermelha: LSOT).). V_{GB1} varia de 3 a 14 V com passo de 1 V e $V_{SB1}=0V$.

Figura 4.24. Medidas referentes ao LSOT com $L_2 = 3L_1$. (a) Características correntetensão de saída (azul: M_1 , vermelha: LSOT); V_{DSSAT1} (círculos); V_{DSSATL} (pentagramas). (b) Condutância de saída (azul: M_1 , vermelha: LSOT).). V_{GB1} varia de 3 a 14 V com passo de 1 V e $V_{SB1} = 0V$.

4.2.3. Discussão

Os resultados das medidas do item 4.2 revelam que o limiar de saturação do LSOT, em comparação com um transistor isolado, foi também antecipado, como nas simulações do item 4.1. As curvas dos gráficos I_DxV_{DS} apresentaram comportamentos diferentes, à medida que foi modificado o valor de L_2 . Com o aumento do comprimento do canal de M_2 , e consequente redução da razão de aspecto, o indesejável máximo local é abaixado, tornando as características mais suaves, mas a diferença entre V_{DSSATL} e V_{DSSAT1} tende a diminuir. Isto já era esperado, pois com o aumento de L_2 , tem-se valores menores de I_{D2} na região triodo. Como esta corrente, juntamente com I_{D1} , compõe a corrente de dreno do LSOT, esta última não alcançará valores tão altos, em comparação com os casos onde L_2 foi menor.

Entretanto, a ampliação da diferença entre V_{DSSATL} e V_{DSSAT1} para valores menores de L_2 é enganosa, pois resulta no critério utilizado para determinar este parâmetro (descrito no item 4.1.4): note-se que as inclinações das características do LSOT

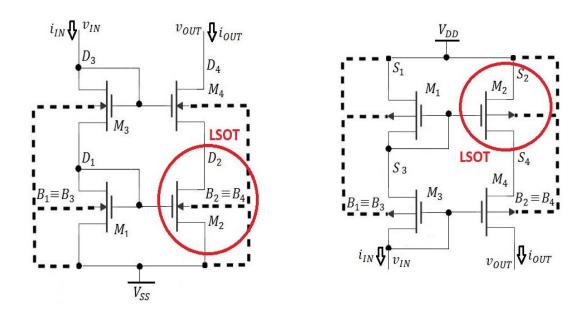
em $V_{DS} = 0$ resultam bem maiores que as de M_1 para $L_2 = L_1$, comparadas com as dos outros dois casos, sobretudo o de $L_2 = 3L_1$.

Nas características da condutância de saída, é possível observar que, para qualquer das três montagens e para os valores mais elevados de V_{GB1} (níveis de inversão maiores), os valores correspondentes ao LSOT decrescem mais rapidamente que os correspondentes ao transistor isolado.

Este experimento foi limitado pelas poucas possibilidades de dimensionamento de M_2 , o que não acontece no projeto de um circuito integrado onde há um universo infinito de valores de razão de aspecto para otimizar a redução do limiar de inversão e a suavização das características. Entretanto o objetivo aqui é mostrar que o conceito do LSOT é válido também experimentalmente.

5. APLICAÇÃO DA REDE LSOT EM ESPELHOS DE CORRENTE

Neste capítulo é analisada a viabilidade da utilização da rede LSOT para ampliar a excursão do sinal de saída de espelhos de corrente. Optou-se por substituir um transistor do ramo de saída do espelho Cascode por um LSOT e aferir por simulação o desempenho do circuito no que concerne à excursão do sinal de tensão de saída, condutância de saída, erro de espelhamento, largura de banda, potência e área ativa. Os resultados de simulação do espelho Cascode com LSOT é comparado com os resultados do espelho Cascode tradicional e do espelho simples, doravante designado espelho Widlar, uma vez que é também referido como espelho Widlar sem resistor ("resistor free") [18].


5.1. ALTERAÇÃO NO ESPELHO CASCODE COM INSERÇÃO DO LSOT

A escolha do espelho Cascode para a realização dos testes deste Capítulo residem no fato de ser uma das configurações de espelho mais utilizadas por projetistas de circuitos integrados e por apresentar reduzida excursão do sinal de tensão de saída, se comparado com o espelho simples, em virtude do empilhamento de dois transistores no ramo de saída. As demais características de desempenho do espelho Cascode são aceitáveis para um grande número de aplicações. Outras configurações de espelho que apresentam condutância de saída tão baixa ou inferior à do espelho Cascode apresentam ramos de saída com topologia análoga e, portanto, com semelhante limitação na excursão do sinal de tensão de saída.

A fim de obter ampliação da excursão do sinal de tensão de saída, foi inserida uma rede LSOT em cada uma das configurações canal N e canal P do espelho Cascode, substituindo o transistor de saída próximo ao terminal de alimentação V_{SS} (V_{DD}) para o canal N (P), transistor este destacado na Figura 5.1. A alternativa de substituição do outro transistor do ramo de saída (aquele conectado ao nó de saída) por um LSOT não apresentou resultados tão satisfatórios como a solução aqui adotada. Isto acontece porque, como o dispositivo conectado ao nó de saída apresenta efeito de corpo mais pronunciado (tensão fonte-substrato não nula) que o conectado ao terminal de alimentação, então encontra-se num nível de inversão mais baixo que este último. Foi já constatado (capítulo 4) que em níveis de inversão mais baixos a aplicação da rede LSOT é menos efetiva para a redução do limiar de saturação. Além disto, a substituição de ambos transistores do ramo de saída por redes LSOT em série não logrou diferença significativa no desempenho

em relação à substituição do componente destacado na Figura 5.1. Por este motivo, as simulações realizadas neste trabalho referem-se apenas à primeira solução indicada.

Nas simulações apresentadas neste Capítulo assume-se que os transistores M_1 , M_3 e M_4 da Figura 5.1 têm as mesmas dimensões do transistor M_1 do LSOT.

Figura 5.1. Espelho Cascode com destaque para o transistor a ser substituído pelo LSOT. (a) Configuração Canal *N*. (b) Configuração Canal *P*.

5.2. CONFIGURAÇÕES DOS ESPELHOS DE CORRENTE PARA SIMULAÇÕES

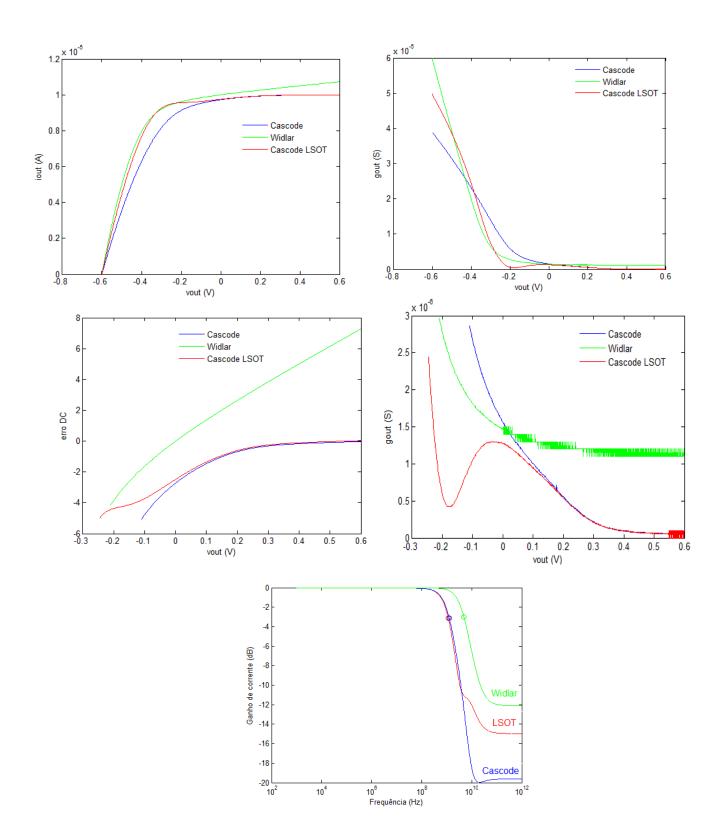
A configuração do LSOT canal N usada nas simulações para comparação entre os espelhos teve como dimensões iniciais (configuração IX, na Tabela XVI): W_1 = 0,2 μ m; L_1 = 5 μ m; W_2 = 0,2 μ m; L_2 = 1 μ m. Na configuração do LSOT canal P, por sua vez: W_1 = 0,5 μ m; L_1 = 0,5 μ m; W_2 = 0,5 μ m; U_2 = 0,5 μ m. Estas dimensões referem-se aos transistores U_1 e U_2 do LSOT isolado. Nos espelhos tradicionais Widlar e Cascode, todos os transistores foram configurados com dimensões iguais às do transistor U_1 do LSOT. Nas configurações U_1 00 e U_2 00, foram alteradas as razões de espelhamento dos transistores de saída. Assim, os valores da largura dos transistores de saída dos espelhos foram 10 vezes e 100 vezes maiores do que na configuração U_1 0, respectivamente. O comprimento de todos os transistores manteve-se inalterado (Tabelas XVI e XVII).

	Dimensões dos transistores de saída (canal N)									
Es	pelho	Widlar	Caso	code	Cascode com LSOT					
Trai	nsistor	M_2	M_2 M_4		LSOT	M_4				
Configuração	1 1 X 1 2		$W_2 = 0.2 \mu m$ $W_4 = 0.2 \mu m$ $L_4 = 0.5 \mu m$		$W_1 = 0.2 \mu m$ $L_1 = 0.5 \mu m$ $W_2 = 0.2 \mu m$ $L_2 = 1 \mu m$	$W_4 = 0.2 \mu m$ $L_4 = 0.5 \mu m$				
	10X	$W_2 = 2\mu m$ $L_2 = 0.5\mu m$	$W_2 = 2\mu m$ $L_2 = 0.5\mu m$	$W_4 = 2\mu m$ $L_4 = 0.5\mu m$	$W_1 = 2\mu m$ $L_1 = 0.5\mu m$ $W_2 = 2\mu m$ $L_2 = 1\mu m$	$W_4 = 2\mu m$ $L_4 = 0.5\mu m$				
	100X	$W_2 = 20 \mu m$ $L_2 = 0.5 \mu m$	$W_2 = 20 \mu m$ $L_2 = 0.5 \mu m$	$W_4 = 20 \mu m$ $L_4 = 0.5 \mu m$	$W_1 = 20 \mu m$ $L_1 = 0.5 \mu m$ $W_2 = 20 \mu m$ $L_2 = 1 \mu m$	$W_4 = 20\mu m$ $L_4 = 0.5\mu m$				

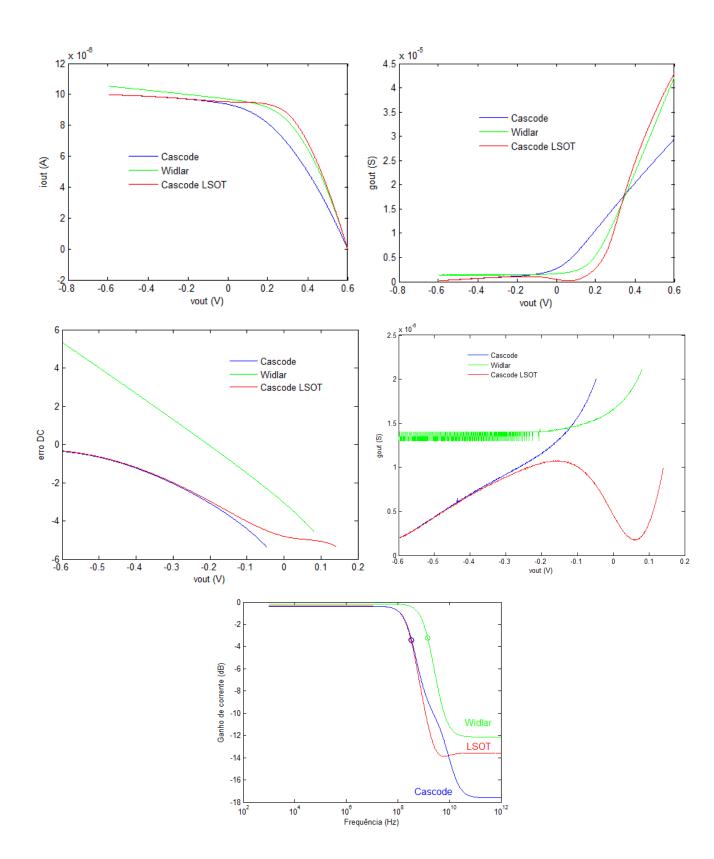
Tabela XVI: Dimensões dos transistores de saída usadas nas simulações comparativas dos espelhos canal N.

	Dimensões dos transistores de saída (canal P)									
Es	pelho	Widlar	Caso	code	Cascode com LSOT					
Tra	nsistor	M_2	M_2 M_4		LSOT	M_4				
Configuração	1 X 1 =		$W_2 = 0.5 \mu m$ $L_2 = 0.5 \mu m$	$W_4 = 0.5 \mu m$ $L_4 = 0.5 \mu m$	$W_1 = 0.5 \mu m$ $L_1 = 0.5 \mu m$ $W_2 = 0.5 \mu m$ $L_2 = 0.5 \mu m$	$W_4 = 0.5 \mu m$ $L_4 = 0.5 \mu m$				
	10X	$W_2 = 5\mu m$ $L_2 = 0.5\mu m$	$W_2 = 5\mu m$ $L_2 = 0.5\mu m$	$W_4 = 5\mu m$ $L_4 = 0,5\mu m$	$W_1 = 5\mu m$ $L_1 = 0.5\mu m$ $W_2 = 5\mu m$ $L_2 = 0.5\mu m$	$W_4 = 5\mu m$ $L_4 = 0.5\mu m$				
	100X	$W_2 = 50 \mu m$ $L_2 = 0.5 \mu m$	$W_2 = 50\mu m$ $L_2 = 0.5\mu m$	$W_4 = 50 \mu m$ $L_4 = 0.5 \mu m$	$W_1 = 50 \mu m$ $L_1 = 0.5 \mu m$ $W_2 = 50 \mu m$ $L_2 = 0.5 \mu m$	$W_4 = 50 \mu m$ $L_4 = 0.5 \mu m$				

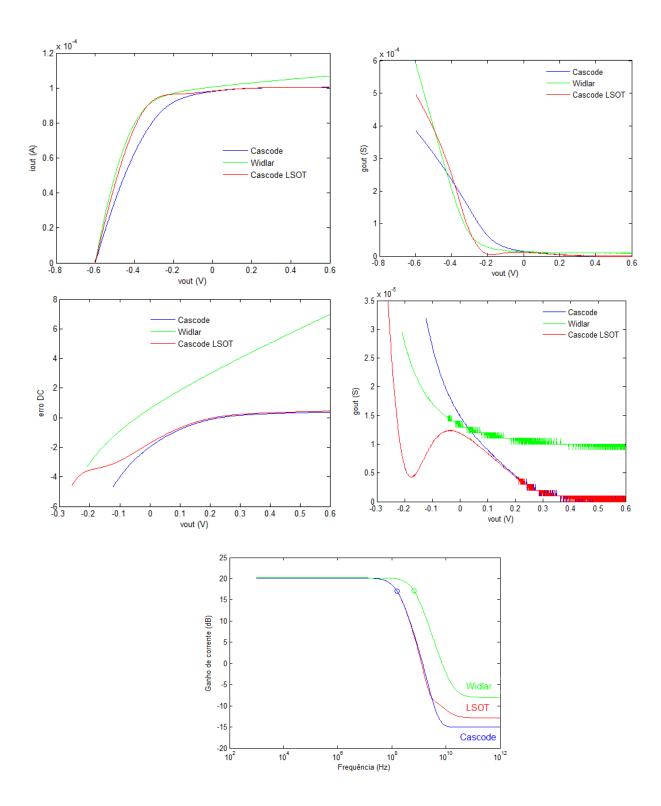
Tabela XVII: Dimensões dos transistores de saída usadas nas simulações comparativas dos espelhos canal P.

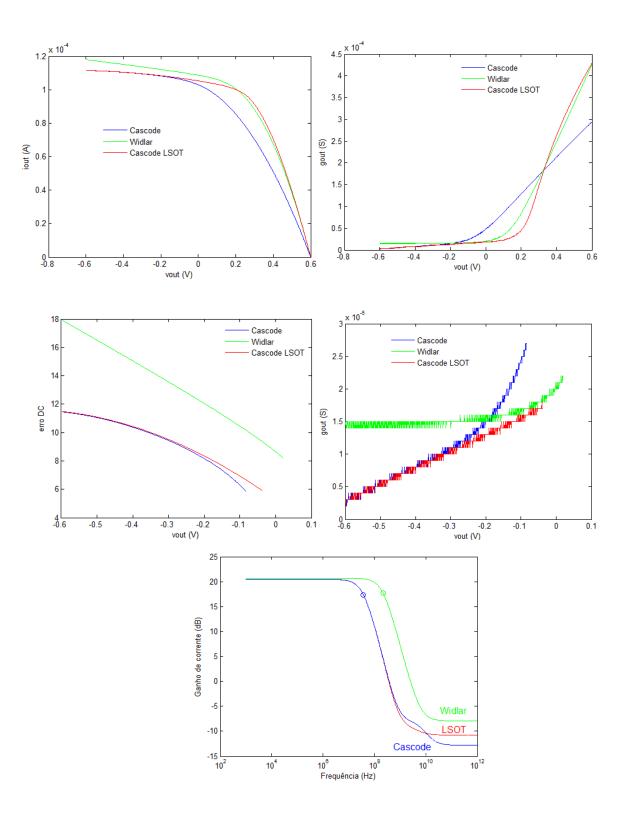

5.3. RESULTADOS DAS SIMULAÇÕES

Foram realizadas simulações DC e de pequenos sinais do espelho Cascode tradicional, do espelho Cascode com LSOT e do espelho Widlar tradicional. Das características DC simuladas foram extraídos os seguintes parâmetros de desempenho: potencial de saída mínimo (v_{outmin}) ou máximo ($v_{outmáx}$), conforme a configuração dos espelhos seja canal N ou canal P, respectivamente, condutância de saída g_{out} e erro de espelhamento em porcento. Da análise da operação com pequenos sinais, foi levantada a resposta em frequência do ganho de corrente do espelho para determinação da banda. Para este fim, foi adicionado um sinal de corrente AC à corrente quiescente de entrada e o potencial de saída foi fixado num valor maior(menor) que $v_{outmin(máx)}$ no caso de espelho canal N(P). Também foram obtidos por simulação os valores das potências estáticas totais dos espelhos. As áreas ativas $W \times L$ de todos os transistores do circuito foram somadas para cada espelho testado.


Foram traçados os seguintes gráficos para análise dos parâmetros de desempenho:

- (i) Corrente de saída *versus* potencial de saída $(i_{out} \times v_{out})$;
- (ii) Condutância de saída *versus* potencial de saída $(g_{out} \times v_{out})$, para todos valores de v_{out} ;
- (iii) Condutância de saída versus potencial de saída $(g_{out} \ x \ v_{out})$, para $v_{out} \ge v_{outmin}$ ou $v_{out} \le v_{outmáx}$, conforme a configuração do espelho seja canal N ou canal P, respectivamente, sendo $v_{outmin(max)}$ o valor do potencial de saída a partir do qual (até o qual) a magnitude da diferença entre o valor da corrente de saída e seu valor final é menor (maior) que 5% do valor final, na configuração canal N(P);
- (iv) Erro de descasamento DC (erro de espelhamento) percentual *versus* potencial de saída ($erro_{DC} \times v_{out}$).
- (v) Valor absoluto do ganho de corrente em decibéis versus frequência do sinal de corrente de entrada.


As Figuras 5.2 a 5.7 mostram os gráficos das simulações das configurações *1X*, *10X* e *100X*, dos espelhos canal *N* e canal *P*, Widlar, Cascode e Cascode com LSOT, conforme Tabela XVI e Tabela XVII:


Figura 5.2. Gráficos comparativos de espelhos para a configuração IX dos espelhos Canal N.

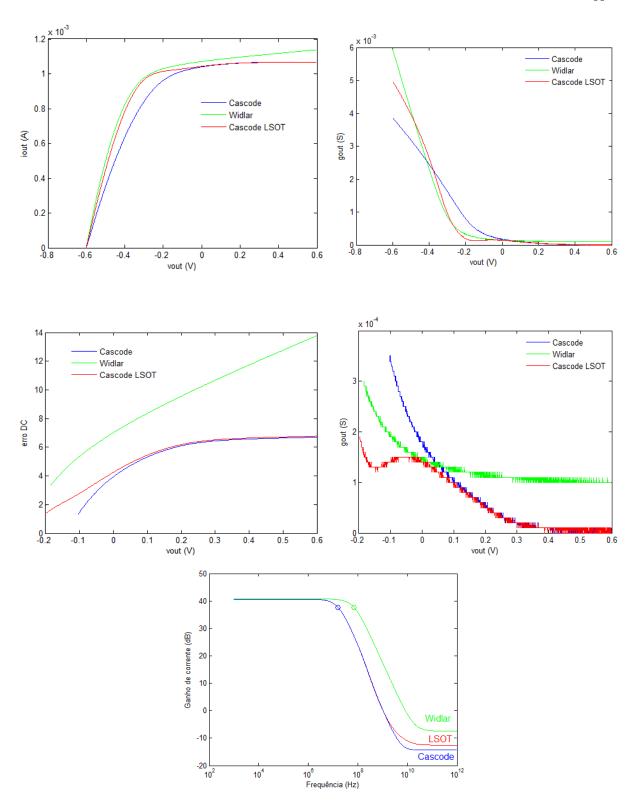

Figura 5.3. Gráficos comparativos de espelhos para a configuração IX dos espelhos Canal P.


Figura 5.4. Gráficos comparativos de espelhos para a configuração 10X dos espelhos Canal N.

Figura 5.5. Gráficos comparativos de espelhos para a configuração 10X dos espelhos Canal P.

Figura 5.6. Gráficos comparativos de espelhos para a configuração 100X dos espelhos Canal N.

Figura 5.7. Gráficos comparativos de espelhos para a configuração 100X dos espelhos Canal P.

Os seguintes parâmetros de desempenho, obtidos a partir das simulações, foram inseridos nas Tabelas XVIII a XX: frequência de corte em -3 dB (f3dB); condutância de saída (g_{out}) e erro de espelhamento (erro) percentual ambos para $v_{out} = V_{DD}$ nos espelhos canal N e $v_{out} = V_{SS}$ nos espelhos canal P; voutmin, para canal N e voutmax, para canal P; potência estática total; área ativa total.

	Canal N					
	f3dB [Hz]	gout [S]	erro DC [%]	voutmin [V]	potência [W]	área ativa[m²]
Cascode LSOT	1,1482E+09	1,0000E-07	0,0290	-0,2460	2,9205E-05	7,6000E-13
Cascode	1,2589E+09	6,0000E-08	-0,0287	-0,1100	2,3998E-05	4,0000E-13
Widlar	4,8978E+09	1,1000E-06	7,2670	-0,2100	2,4876E-05	2,0000E-13
	Canal P					
	f3dB [Hz]	gout [S]	erro DC[%]	voutmax [V]	potência [W]	área ativa[m²]
Cascode LSOT	3,2359E+08	1,9000E-07	-0,3398	0,1400	2,5816E-05	1,4100E-12
Cascode	3,4674E+08	2,0000E-07	-0,3622	-0,0470	2,3958E-05	1,0000E-12
Widlar	1,4454E+09	1,3000E-06	5,3310	0,0800	2,4640E-05	5,0000E-13

Tabela XVIII: Parâmetros de desempenho dos espelhos Cascode com LSOT, Cascode tradicional e Widlar para Configuração *1X*.

	Canal N							
	f3dB [Hz]	f3dB [Hz] gout [S] erro [%] voutmin [V] potência [W] área ativa[m²]						
Cascode LSOT	1,5488E+08	1,0000E-06	0,4410	-0,2600	1,3760E-04	4,3600E-12		
Cascode	1,5488E+08	1,0000E-06	0,3780	-0,1220	1,3246E-04	2,2000E-12		
Widlar	6,6069E+08	1,0000E-05	6,9700	-0,2090	1,4036E-04	1,1000E-12		

	Canal P						
	f3dB [Hz] gout [S] erro [%] voutmax [V] potência [W] área ativa[m²						
Cascode LSOT	3,7154E+07	3,0000E-06	11,4910	-0,0380	1,4759E-04	8,1600E-12	
Cascode	3,7154E+07	3,0000E-06	11,4620	-0,0840	1,4576E-04	5,5000E-12	
Widlar	2,1878E+08	1,5000E-05	17,9460	0,0200	1,5354E-04	2,7500E-12	

Tabela XIX. Parâmetros de desempenho dos espelhos Cascode com LSOT, Cascode tradicional e Widlar para Configuração *10X*.

	Canal N						
	f3dB [Hz] gout [S] erro [%] voutmin [V] potência [W] área ativa[m²						
Cascode LSOT	1,5849E+07	0,0000E+00	6,7660	-0,1970	1,2982E-03	4,0400E-11	
Cascode	1,5849E+07	1,0000E-05	6,6970	-0,1030	1,2924E-03	2,0200E-11	
Widlar	6,9183E+07	1,0000E-04	13,7770	-0,1840	1,3774E-03	1,0100E-11	

	Canal P						
	f3dB [Hz] gout [S] erro [%] voutmax [V] potência [W] área ativa[m²]						
Cascode LSOT	3,8019E+06	3,0000E-05	14,9700	-0,0620	1,3934E-03	7,5700E-11	
Cascode	3,8019E+06	3,0000E-05	14,9380	-0,0980	1,3912E-03	5,0500E-11	
Widlar	2,3442E+07	1,4000E-04	21,7440	-0,0040	1,4730E-03	2,5300E-11	

Tabela XX. Parâmetros de desempenho dos espelhos Cascode com LSOT, Cascode tradicional e Widlar para Configuração *100X*.

5.4. DISCUSSÃO

Os resultados mostrados nos gráficos e tabelas do item 5.3 foram satisfatórios para os espelhos que utilizam o LSOT. A excursão da tensão de saída foi maior nos espelhos cascode LSOT que nos espelhos cascode comuns em todas as situações, superando até mesmo a verificada no espelho Widlar em alguns casos. As únicas exceções foram nas configurações 100X e 10X, em comparação com o espelho Widlar, ainda assim só na versão canal P. Em relação à área ativa, esta ficou maior no caso dos espelhos cascode LSOT, mas isto já era esperado, pois o LSOT é composto por quatro transistores, o que totaliza três transistores a mais neste espelho em relação ao cascode comum e cinco a mais que o Widlar. As bandas passantes tiveram larguras semelhantes entre o cascode LSOT e o cascode comum, sendo maiores no Widlar, em todas as situações. A condutância de saída e o erro de descasamento DC tiveram comportamento semelhante entre o cascode LSOT e o cascode comum, e muito melhor que no Widlar em todas as situações. As potências estáticas apresentaram valores parecidos em todas as situações, em todos os espelhos.

Pode-se concluir, portanto, que os espelhos cascode LSOT, sejam de canal N, sejam de canal P, apresentam uma melhora considerável da excursão da tensão de saída, comparadas à dos espelhos cascode comuns correspondentes, preservando as demais características de desempenho, ao custo de uma área nunca mais do que duas vezes maior. A área ativa inferior e a banda mais larga proporcionadas pelos espelhos Widlar em geral não são suficientes para compensar sua baixa regulação (condutâncias de saída bem mais elevadas) e os consideráveis erros de descasamento DC, razão pela qual as estruturas cascodadas são preferíveis.

6. CONCLUSÃO

Os resultados de simulação para o LSOT isolado, apresentados na Seção 4.1, ilustram a possibilidade de utilizá-lo como uma estrutura equivalente a um transistor MOS de baixa tensão de limiar de saturação. Sobretudo para os valores mais elevados de tensão porta-substrato, quando o nível de inversão de M_1 aumenta e o estrangulamento do canal demanda potencial de dreno maior, a adição da corrente de M_2 , então no regime de saturação, contribui de forma significativa para a antecipação do limiar de saturação.

Entretanto, é também para os valores mais elevados de V_{GB1} que pode acontecer uma sobrecompensação da corrente pois é quando a corrente de M_2 atinge picos mais elevados devidos ao efeito de corpo em M_4 – como M_4 tem sempre o mesmo nível de inversão de M_3 , seu potencial de fonte, igual ao potencial de porta de M_2 , eleva-se para compensar o aumento de $V_{GB4} = V_{GB1}$.

O comportamento não monotônico da corrente do LSOT, $I_D = I_{D1} + I_{D2}$, pode levar a limitações na aplicação da estrutura, em termos de nível de inversão de M_1 , mas pode também ser mitigado por um dimensionamento adequado dos transistores. Razões de aspecto desiguais para M_1 e M_2 fazem-se então necessárias, quanto mais que estando em regimes de operação diferentes, estes transistores apresentam efeitos de segunda ordem com diferentes intensidades, como a degradação de mobilidade com campo elétrico transversal e a saturação de velocidade dos portadores do canal.

Os resultados exibidos nas tabelas do item 4.1.4 reforçam a aplicabilidade do LSOT na redução do limiar de saturação, mostrando que esta redução pode chegar a algumas centenas de milivolts, especialmente para valores mais altos do potencial de porta (níveis mais elevados de inversão).

Os resultados obtidos a partir das simulações do Capítulo 5 e os dados das Tabelas XVIII a XX mostram que também é extremamente favorável o uso do LSOT em espelhos cascode: com um dimensionamento adequado, o aumento observado na área ativa é tolerável e a potência estática pode ser mantida da mesma ordem de grandeza que nos espelhos cascode e simples (Widlar sem resistor); a banda fica comparável à do cascode comum (menor que a do simples); o erro DC e a condutância de saída são também semelhantes aos do cascode comum (muito melhores que os do simples) e a excursão da tensão de saída é mais ampliada que no espelho cascode comum, podendo até sobrepujar a do espelho simples.

O principal impacto científico deste trabalho é a proposição de uma rede simples de quatro transistores que corresponde a um único transistor com limiar de saturação baixo, mesmo em níveis de inversão elevados. Tais redes poderão ser aplicadas em substituição a transistores na saída de circuitos analógicos para processamento de sinais que requeiram ampla excursão do sinal de tensão na saída. Torna-se, portanto, um recurso de interesse para projetistas de circuitos integrados analógicos em tecnologia CMOS, em cenários de baixa tensão de alimentação.

A continuação deste trabalho de pesquisa poderá incluir:

- (i) Estabelecer procedimentos para um dimensionamento sistemático do circuito.
- (ii) Comparar espelhos cascode utilizando LSOT com espelhos de alto desempenho concebidos para ampliar a excursão da tensão de saída.
- (iii) Avaliar a aplicabilidade da introdução do espelho LSOT em espelhos de alto desempenho, inclusive os concebidos para ampliar a excursão da tensão de saída.
- (iv) Avaliar a aplicabilidade da introdução do espelho LSOT em amplificadores cascodados.

Trabalho Publicado:

A. A. Fernandes, F. S. de Andrade, A. J. S. de Sousa, G. C. Gonçalves, E. P. Santana, M. D. Pereira and A. I. A. Cunha, "Low saturation onset MOS transistor: an equivalent network," em Proc. *34th Symposium on Microelectronic Technology and Devices* (SBMICRO), São Paulo, 2019.

REFERÊNCIAS

- [1] C. Toumazou, F. J. Lidgey, and D. Haigh, eds. Analogue IC design: the current-mode approach. Vol. 2. Presbyterian Publishing Corp, 1990.
- [2] P. R. Gray et al. Analysis and design of analog integrated circuits. Wiley, 2001.
- [3] D. A. Johns and K. Martin. Analog integrated circuit design. John Wiley & Sons, 2008.
- [4] M. C. Schneider and C. Galup-Montoro. CMOS analog design using all-region MOSFET modeling. Cambridge University Press, 2010.
- [5] INTERNATIONAL BUSINESS MACHINES CORPORATION (IBM). "Design Kit and Technology Training CMOS8RF (CMRF8SF) V1700." New York. 2010.
- [6] Tsividis, Y. "**Operation and modeling of the MOS transistor**", McGraw-Hill, New York, 1987.
- [7] ELPROCUS. What is MOSFET with Working? MOSFET as a Switch. Disponível em:
- < https://www.elprocus.com/mosfet-as-a-switch-circuit-diagram-free-circuits/ Acesso em 15 de março de 2019.
- [8] C. C. Enz, F. Krummenacher and E. A. Vittoz, "An analytical MOS transistor model valid in all regions of operation and dedicated to low voltage and low-current applications," Analog Integrated Circuits and Signal Processing, vol. 8, 1995, pp. 83–114.
- [9] A. I. A Cunha. M. C. Schneider, C. Galup-Montoro, "An MOS transistor model for analog circuitos design." IEEE Journal of Solid States Circuits, v. 33, n.10, p. 1510-1519, 1998.
- [10] A. I. A Cunha. Um Modelo do Transistor MOS para o Projeto de Circuitos Integrados. 1996. Tese (Doutorado em Engenharia Elétrica) Universidade Federal de Santa Catarina. Florianópolis.
- [11] K.-M. Rho, K. Lee, M. Shur, and T. Fjeldly, "Unified Quasi-Static MOSFET capacitance model," IEEE Transactions on Electron Devices, vol. 40, January 1993, pp.131-136.
- [12] S. S. Rajput and S. S. Jamuar, "A current mirror for low voltage, high performance analog circuits," *Analog Integr. Circuits Signal Process.*, vol. 36, no. 3, pp. 221–233, 2003.

- [13] V. I. Prodanov, M.M.Green, "CMOS current mirrors with reduced input and output voltage requirements", Electron. Lett. 32(1996)104–105.
- [14] B. Aggarwal, M. Gupta, and A. K. Gupta, "A comparative study of various current mirror configurations: Topologies and characteristics," *Microelectronics J.*, vol. 53, pp. 134–155, 2016.
- [15] J. Ramirez-Angulo, M. S. Sawant, A. Lopez-Martin, R.G. Carvajal, "Compact implementation of high-performance CMOS current mirror", Electron.Lett.41(2010) 570-572.
- [16] ALLDATASHEET. **CD 4007 datasheet**. Disponível em:
- < https://www.alldatasheet.com/datasheet-pdf/pdf/80376/NSC/CD4007.html > Acesso em 05 de novembro de 2020.
- [17] A. A. Fernandes, F. S. de Andrade, A. J. S. de Sousa, G. C. Gonçalves, E. P. Santana, M. D. Pereira and A. I. A. Cunha, "Low saturation onset MOS transistor: an equivalent network," em Proc. *34th Symposium on Microelectronic Technology and Devices (SBMICRO)*, São Paulo, 2019.
- [18] L. Liang, Z. Zhu and Y. Yang, "A very low-TC second-order temperature compensated CMOS current reference," Journal of Circuits, Systems and Computers, vol. 23, no. 3 (1450042), 2014.