FEDERAL UNIVERSITY OF BAHIA

MASTER OF SCIENCE THESIS

OBJECT DETECTION, LOCALIZATION, AND GRASPING
WITH VISUAL SENSORS APPLIED TO ROBOTIC
MANIPULATORS

Daniel Moura de Oliveira

Graduate Program In Electrical Engineering

Salvador
2019

DANIEL MOURA DE OLIVEIRA

OBJECT DETECTION, LOCALIZATION, AND GRASPING WITH
VISUAL SENSORS APPLIED TO ROBOTIC MANIPULATORS

This Master of Science Thesis was
presented to the Graduate Program
in Electrical Engineering of the Fed-
eral University of Bahia as a par-
tial requirement for completion of the
Master’s Degree in Electrical Engi-
neering.

Advisor: Prof. Dr. André Gustavo Scolari Conceicao

Salvador
2019

1

Ficha catalografica.

Moura de Oliveira, Daniel

OBJECT DETECTION, LOCALIZATION, AND GRASPING WITH
VISUAL SENSORS APPLIED TO ROBOTIC MANIPULATORS/ Daniel
Moura de Oliveira— Salvador, 2019.

107p.: il.

Advisor: Prof. Dr. André Gustavo Scolari Conceicao.
Master Thesis— FEDERAL UNIVERSITY OF BAHIA, POLYTECHNIC
SCHOOL, 2019.

1. Visao Computacional. 2. Grasping. 3. Pick and Place. 4. Robotic
Manipulators. 5. PBVS..
I. Gustavo Scolari Conceicao, André. II. FEDERAL UNIVERSITY OF
BAHIA. POLYTECHNIC SCHOOL. III Titulo.

111

Daniel Moura de Oliveira

“Object Detection, Localization, and Grasping with Visual Sensors Applied to
Robotic Manipulators”

Dissertagdo apresentada a Universidade Federal da Bahia, como parte das
exigéncias do Programa de Po6s-Graduagdo em Engenharia Elétrica, para a
obtencao do titulo de Mestre.

APROVADA em: 10 de Setembro de 2019.

BANCA EXAMINADORA

Isko

Prof. Dr. André Géistayo Scolari Conceigao
Orientaddy - UFBA

Zricer
Prof. Dr. Tiago Trindade Ribeiro
UFBA

Prof. Dr. Eduardo Telmo Fonseca Santos
[FBA

ACKNOWLEDGEMENTS

First, i want to dedicate this work to to my mother, my father and my brother. I would
like to thanks my advisor prof. Andre Gustavo Scolari Concei¢ao for his support and
patience in guiding me to write this document.

I would like to thank the people in the LaR laboratory, for helping solving and dis-
cussing some problems found a long the way. Lastly, i would like to thanks European
Union’s Horizon 2020 research and innovation programme for found this project.

v

RESUMO

Esta dissertacao de mestrado tem como objetivo principal desenvolver um sistema de pick
and place para bracos roboticos com o uso de visao computacional. Serao utilizadas duas
abordagens: eye in hand, onde a camera fica fixa em uma posicao proxima a garra do
robo e eye to hand, onde a camera fica fixa em uma posi¢ao préxima a base do robo. Para
deteccao de objetos serao implementados e avaliados dois algoritmos: por tags, utilizando
AprilTags, e por features, utilizando Oriented FAST and Rotated BRIEF(ORB).

Para validacao do sistema proposto serao utilizados os bracos robéticos UR5 e JACO
em conjunto de um sensor RGB-D. Resultados experimentais comparando os algoritmos
de visao utilizado e realizando tarefas de pick and place serao feitos para demonstrar a
eficiéncia do sistema.

Palavras-chave: URD5, JACO, AprilTag, ORB, Eye in Hand, Visao Computacional.

ABSTRACT

This Master’s thesis aims to develop a pick and place system for robotic arms with the
use of computer vision. Two approaches will be used: eye in hand, where the camera is
fixed on the robotic manipulator and eye to hand, where the camera is near the robot
base. For the detection of objects two algorithms will be implemented and evaluated:
detection by tags, using AprilTags, and by features, using Oriented FAST and Rotated
BRIEF(ORB).

For the validation of the proposed system, the UR5 and JACO robotic arms will
be used in conjunction with an RGB-D sensor. Experimental results comparing both
computer vision algorithm and pick and place tasks will be done to shown the efficiency
of the system.

Keywords: URb, JACO, AprilTag, ORB, Eye in Hand, Computer Vision.

vi

CONTENTS

Chapter 1—Introduction 1
1.1 Objectives L 4
1.1.1 Specific Objectives 5

1.2 Justification 5
1.3 Structure of the Thesis, 5
Chapter 2—Computer Vision 6
2.1 Related Work 6
2.2 Intel Realsense and Microsoft Kinect 6
2.3 Oriented FAST and Rotated BRIEF 7
2.3.1 FAST . . . 7

2.3.2 oFAST 8

2.3.3 BRIEF 8

234 rBRIEF 9

2.3.5 RANSAC 9

24 AprilTags 10
Chapter 3—Control System 13
3.1 Related Work 13
3.2 Robotic System 13
3.3 Homogeneous Transformation 15
3.4 Kinematics 16
3.4.1 Forward Kinematics 17

3.4.2 Inverse Kinematics 18

3.5 Trajectory Planning o 20
3.6 3D localization 20
3.7 Position-Based Visual Servoingo 21
Chapter 4—Results 24
4.1 Detection and Pose Estimation 24
4.1.1 Visual Data 24

4111 ORBvsSIFTvs SURF 24

4.1.1.2 ORB vs AprilTag: Distance = 0.36 meters 26

4.1.1.3 ORB vs AprilTag: Distance = 0.57 meters 33

Vil

viii CONTENTS

4.2 Pick and Place System oL 40
4.2.1 Objectonatable L 41

4.2.2 Objectinsideabox 42

4.2.3 Pick and Place: Object inside a 3D printer 47

4.2.4 Error Control and Repeatability 52

4.2.5 Mobile Manipulatoro 55
Chapter 5—Conclusion 59
Appendix A—Appendix 65

A1 Source Code 65

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

LIST OF FIGURES

Smart World. 2
Manipulator Robot.o 3
Object detection by features. L. 3
April Tags. 4
Intel Realsense D435. 4
Microsoft Kinect. 5
RANSAC execution. 10
AprilTags families.o 11
AprilTag and an object.o 11
AprilTag and another object. 12
Yellow AprilTag from 3D printer. 12
URS5 with Robotiq Gripper. 14
JACO robotic arm. 15
Eyeon hand set up.. o 17
Joit Axis Reference. o 18
Rotary Joint example. oo 19
PBVS control system example. 22
PBVS control system. oo 23
Object detection from the algorithms. 25
Object X position. 25
Object Y position. 25
Object Z position. 26
Object X position while rotated. 26
Object Y position while rotated. 27
Object Z position while rotated. 27
Experiment 1.1.1: ORB detection. 28
Experiment 1.1.1: Tag detection. 28
Experiment 1.1.1: ORB vs AprilTag x-axis position. 29
Experiment 1.1.1: ORB vs AprilTag y-axis position. 29
Experiment 1.1.1: ORB vs AprilTag z-axis position. 29
Experiment 1.1.1: ORB vs AprilTag x-axis orientation. 30
Experiment 1.1.1: ORB vs AprilTag y-axis orientation. 30
Experiment 1.1.1: ORB vs AprilTag z-axis orientation. 31
Experiment 1.1.1: ORB 90 degree detection. 31

1X

4.17

4.18

4.19

4.20

4.21

4.22

4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33

4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45

4.46
4.47

LIST OF FIGURES

Experiment 1.1.1: ORB vs AprilTag x-axis position with 95 degree rotation

ON 7 AXIS. . . v v v i e 32
Experiment 1.1.1: ORB vs AprilTag y-axis position with 95 degree rotation

ON 7 AXIS. . . v v v o 32
Experiment 1.1.1: ORB vs AprilTag z-axis position with 95 degree rotation

ON Z AXIS. . . v v v v e 33
Experiment 1.1.1: ORB vs AprilTag x-axis orientation with 95 degree

rotation on Z axis.o 33
Experiment 1.1.1: ORB vs AprilTag y-axis orientation with 95 degree

rotation on Z axis. 34
Experiment 1.1.1: ORB vs AprilTag z-axis orientation with 95 degree ro-

tation on Z axis. 34
Experiment 1.1.2: Tag Detection. 35
Experiment 1.1.2: ORB detection. 35
Experiment 1.1.2: ORB vs AprilTag x-axis position. 35
Experiment 1.1.2: ORB vs AprilTag y-axis position. 36
Experiment 1.1.2: ORB vs AprilTag z-axis position. 36
Experiment 1.1.2: ORB vs AprilTag x-axis orientation. 36
Experiment 1.1.2: ORB vs AprilTag y-axis orientation. 37
Experiment 1.1.2: ORB vs AprilTag z-axis orientation. 37

Experiment 1.1.2: Tag Detection while rotated 15 degrees on the Y axis. 38
Experiment 1.1.2: ORB detection while rotated 15 degrees on the Y axis. 38
Experiment 1.1.2: ORB vs AprilTag x-axis position while rotated 15 de-

greeson the Yoaxis. L oL L 38
Experiment 1.1.2: ORB vs AprilTag y-axis position while rotated 15 de-

greeson the Yoaxis. Lo L 39
Experiment 1.1.2: ORB vs AprilTag z-axis position while rotated 15 de-

greeson the Yoaxis.o 39
Experiment 1.1.2: ORB vs AprilTag x-axis orientation while rotated 15

degrees on the Y axis.o 40
Experiment 1.1.2: ORB vs AprilTag y-axis orientation while rotated 15

degrees on the Y axis. Lo 40
Experiment 1.1.2: ORB vs AprilTag z-axis orientation while rotated 15

degrees on the Y axis. 41
Initial position of the arm. o0 42
Object to be grasped.o 42
Joint positions over time - experiment 1.1. 43
Joint velocities over time - experiment 1.1. 43
Estimated object position by the Kinect versus end effector position over

time - experiment 1.1. 44
Experiment 1.2: ORB Detection. 44
Experiment 1.2: Tag detection using ORB. 45
Experiment 1.2: AprilTag detection. 45

Experiment 1.2: Estimated tag position vs arm position. 46

LIST OF FIGURES xi

4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63

4.64
4.65
4.66
4.67
4.68
4.69

Experiment 1.2: Tag position relative to the camera. 46
Experiment 1.2: Estimated tag position using ORB vs arm position. . . . 47
Experiment 1.2: Tag position relative to the camera using ORB. 47
Experiment 1.2: Tag detection using ORB 2. 48
Experiment 1.2: Tag detection using ORB 3. 48
Experiment 1.2: Tag detection using ORB 4. 48
Experiment 1.3: Set up. 49
Experiment 1.3: Joint position over time. 49
Experiment 1.3: Joint velocity over time. 50
Experiment 1.3: Estimated object position vs arm position. 50
Experiment 1.3: Object position relative to the camera. 51
Experiment 1.3: Gripper position over time. 51
Experiment 1.3: Gripper status over time. 52
Experiment 1.4: State Machine. 53
Experiment 1.4: Arm position over the experiments. 53
Experiment 1.4: Arm position error compared to the object estimated

POSItiON. L 54
Experiment 1.4: Arm orientation error. 55
URS5 mounted on Husky. L. 95
Experiment 2: 3D movement of the arm. 56
Experiment 2: Estimated object position vs arm position. Y
Experiment 2: Gripper position over time. 58
Experiment 2: Gripper status over time. 58

3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

4.15
4.16

LIST OF TABLES

URbH DH parameters.

Comparison between mean and standard deviation from the algorithms on
the object position.
Comparison between mean and standard deviation from the algorithms on
the object position.o
Experiment 1.1.1: Comparison between mean and standard deviation from
both algorithms on its position.
Experiment 1.1.1: Comparison between mean and standard deviation from
both algorithms on its orientation.
Experiment 1.1.1: Comparison between mean and standard deviation from
both algorithms on its position when rotated 95 degrees.
Experiment 1.1.1: Comparison between mean and standard deviation from
both algorithms on its orientation when rotated 95 degrees.
Experiment 1.1.2: Comparison between mean and standard deviation from
both algorithms on its position.
Experiment 1.1.2: Comparison between mean and standard deviation from
both algorithms on its orientation.
Experiment 1.1.2: Comparison between mean and standard deviation from
both algorithms on its position while rotated 15 degrees on the Y axis.

Experiment 1.1.2: Comparison between mean and standard deviation from

both algorithms on its orientation while rotated 15 degrees on the Y axis.

Initial, Pick and End position for this experiment.
Initial and Pick position from both experiments.
Initial, Pick position and Place Position.
Mean, maximum and minimum position error.
Mean, maximum and minimum orientation error.
Start, Pick, Place and Home position

pall

18

26
27
28
31
31
32
34
37
39
40
44
47
20
o4

o4
o7

Chapter

INTRODUCTION

Since the birth of the industry, big companies are always trying to find a way to increase
their production and reduce costs. When the Industrial Revolution started, most pro-
cesses were made by people in terrible working conditions, resulting in several deaths,
leading to the creation of the first labor rights. With the technological advances and the
birth of robots, most of the manual work could be replaced by machines over the years,
reducing costs with labor, more humane working conditions, as repetitive and dangerous
tasks can be done by robots, and increase in productivity, making automation very at-
tractive for the industry. Robots not only take part in industrial tasks, they can work
in environments that are not possible or undesirable by humans like space and undersea
exploration, tasks in a radioactive environments and even defusing explosive devices.

Nowadays, thanks to the evolution of technology, the industry has two important
concepts: internet of things(IoT) and industry 4.0. IoT is the concept of basically con-
necting any device to the Internet or to each other through other means. It is a concept
not just growing in the industry, but in people daily life also, be it through smart phones
or smart houses. While the concept of smart houses and devices isn’t new, as seen in
(COOK et al., 2003), where it is proposed an agent to control and automate a house, the
emergence of small and powerful devices like Raspberry Pi and high-level communication
protocols like Zigbee helped with the evolution of the concept of smart technology. In
Han et al. (HAN; LIM, 2010), ZigBee is used for management of energy of a house while
in Chen-Yen Peng and Rung-Chin Chen (PENG; CHEN, 2018) a Raspberry Pi is used
to control house devices using voice commands. In the future, it is estimated that cities
will become “smart” through IoT, as shown in Figure 1.1.

Industry 4.0 is the fourth revolution that has occurred in manufacturing. It uses
[oT, Machine Learning, multiple devices and data to improve automation processes.
It improves greatly the efficient and production of the industry, reducing the need for
human intervention in the production process. One of the examples of great success in
using Industry 4.0 is Amazon, where they had record sales and profit while having less
workers (MERCHANT, 2019).

2 INTRODUCTION

Libelium Smart World

Smartphones Def lon Electromagnetic Levels

Pallution Smart Lighting

Traffic Congestion
Forest Fire Detection

o oK
lllqg!lu'n

Figure 1.1: Smart World.
Source: Forbes, 2019.

When it comes to robots, that are diverse types of robots available in the market like
mobile robots, robotic manipulators and humanoid robots. Those robots can be used in
the industry in diverse tasks like carrying objects, use simple tools, reach difficult places
and automation. The use of computer vision in robotics, called robotic vision, helped
in the automation process greatly, since the robots can map, localize it self and find
objects in the environment. The robotic manipulator is a robot that looks like an arm,
as shown in Figure 1.2, and it is used mostly on pick and place tasks. Before automation,
these kind of robots used to pick objects while being controlled by an operator or could
be automated to do simple repetitive tasks, like pick an object in a specific position,
but with the advance in technology and computer vision, these task can be completely
autonomous and flexible.

With this in mind, this work will develop a autonomous pick and place system using
computer vision. The objects will be detected using two approaches: Features and Tags.
While some works, like (TEKE, 2018), use fully RGB-D image to detect and track, we are
using the RGB image for object detection and the RGB-D image for object localization
and orientation, where the set of position and orientation can be simply called pose, in
space. This way, we reduce computational costs and improve the system performance.

The feature approach, using the Oriented FAST and Rotated BRIEF (ORB) algo-
rithm, will require an image of the object to detect it, and with this image, extract
features from the image of the object and the image from the visual sensor, compare
those features and detect the object, as seen in Figure 1.3. The tag approach won’t
require previous acknowledgement of the object, but will require acknowledgement of the
tag message, since each tag has an numerical id assigned to it. The tags used, AprilTag,

INTRODUCTION 3

Figure 1.2: Manipulator Robot.
Source: Universal Robots, 2019.

can be seen in Figure 1.4.

Figure 1.3: Object detection by features.

The manipulator robots used to execute the pick and place tasks were the UR5, from
Universal Robots (ROBOTS, 2019b), JACO from Kinova Robots (KINOVA, 2019), the
RGB-D sensor Intel Realsense D435 (INTEL, 2019), seen in Figure 1.5, and Microsoft
Kinect (MOBINI; FOUMANI, 2013), seen in Figure 1.6. Pick and place tasks of dif-
ferent objects will be made to validate the system in different environments to show
the flexibility of the system to grasp objects, like: on a 3D printer, table and inside a
box. The control architecture adopted is the Position Based Visual Servoing (PBVS)
(CORKE, 2017) using the eye in hand and eye to hand configuration. The visual pick
system was delevoped using Robot Operating System (ROS) (QUIGLEY et al., 2009),

4 INTRODUCTION

TagCircle21h7 TagCircle49h12 TagCustom48h12

Figure 1.4: April Tags.

e

Figure 1.5: Intel Realsense D435.

since it is becoming a standard in robotic and make integration between robots easy
and intuitive; Open Computer Vision (OpenCV) (BRADSKI, 2000), since it provides the

necessary computer vision algorithms, and Eigen (GUENNEBAUD; JACOB et al., 2010)
were used.

1.1 OBJECTIVES

The main objective of this research is the development of a control system for robot
manipulators to execute pick and place tasks using computer vision, where two approaches
will be used: on based on features and another in tags. The features approach allow any
object to be detected as long as it has enough features and the tags approach allow an
object to be detected, independent of its features or geometry.

1.2 JUSTIFICATION 5)

Figure 1.6: Microsoft Kinect.

1.1.1 Specific Objectives
The specific objectives are as follows:

e Develop a pick and place system based on computer vision, using features and tags.

Detect and find the object position using RGB sensor.

Pose estimation based on the RGB estimation.

e Use Position Based Visual servoing control architecture.

e Evaluate the pick and place system in different environments.

1.2 JUSTIFICATION

This is a practical work, so the realization of this project implies in the use of know and
existing algorithms, validating those algorithms in practical situations, inheriting the
justificative of the original approaches. This way, expanding the literature to a practical
approach of the problem.

This way, this work can be justified by expanding the literature, testing algorithms
and techniques in a practical environment, creating a practical system that can be used
in the industry, in the context of the Industry 4.0 and its use of robotic vision, since the
costs of a visual sensor is cheaper, compared to others sensor, like lasers.

1.3 STRUCTURE OF THE THESIS
The thesis is structured as follows:

Chapter 2 will shown the used vision algorithms and how they work;

Chapter 3 will discuss the control system used;

Chapter 4 shows the results and discussions related to them;

The conclusion, final considerations and future works will be discussed on chapter
5;

Chapter

COMPUTER VISION

In this chapter, it will be discussed the computer vision algorithms used in this work,
starting with related works on robotic vision on Section 2.1, the visual sensors used in
this work on Section 2.2, the ORB algorithm on Section 2.3 and the AprilTag detection
algorithm on Section 2.4.

2.1 RELATED WORK

Robotic vision is a common topic in literature nowadays, since a vision sensor is more
accessible than a laser or others sensor, while the computers are getting smaller and more
powerful, making the use of complex vision algorithms more viable than ever. Some ex-
amples of AprilTags applications on robotics can be seen in (WESTMAN; KAESS, 2018),
where AprilTag is used to help improve a SLAM algorithm in a underwater environment
and the paper (WANG et al., 2016) uses AprilTag to track and follow a ground vehicle
using a unmanned aerial vehicle. Feature detection algorithms, like ORB, are versatile,
low computational cost and can be applied in multiple applications like: localization in
space using ORB SLAM (MUR-ARTAL; MONTIEL; TARDOS, 2015), detect objects in
movement (XIE et al., 2013) and even object detection using a FPGA (KULKARNI;
JAGTAP; HARPALE, 2013).

2.2 INTEL REALSENSE AND MICROSOFT KINECT

The vision sensors used in this work were the Intel Realsense D435 and Microsoft Kinect.
Both are RGB-D sensors featuring RBG, RGB-D and point cloud image. The Kinect
specifications can be seen below:

e Depth stream range: 4-11.5 ft (1.2-3.5 m)
e Viewing angle: 43 vertical by 57 degrees horizontal field of view

e Frame rate (depth and color stream): 30 frames per second (FPS)

6

2.3 ORIENTED FAST AND ROTATED BRIEF 7

e Depth Resolution: 320x240

e Color Resolution: 640x480
The intel Realsense D435 specifications can be seen below:

e Depth Field of View (FOV)—(Horizontal x Vertical) for HD 16:9: 85.2° x 58° (/-
3°)

e Depth Stream Output Resolution: Up to 1280 x 720

e Depth Stream Output Frame Rate: Up to 90 fps

e Minimum Depth Distance (Min-Z): 0.11 m

e Maximum Range: Approximately 10 meters

e RGB Sensor Resolution and Frame Rate: 1920 x 1080 at 30 fps

e RGB Sensor FOV (Horizontal x Vertical): 69.4° x 42.5° (+/- 3°)

While both look similar, the Intel D435 has some better features, including important
categories like resolution and minimum depth distance. On eye on hand applications,
where the minimum depth distance is an important and limiting factor, since we can’t
create a huge distance between the camera and the end effector, the D435 works better.
For this reason, the Intel visual sensor was on eye on hand applications and the Kinect
on eye to hand applications.

2.3 ORIENTED FAST AND ROTATED BRIEF

The Oriented FAST and Rotated BRIEF (ORB) is a feature detection algorithm like
SIFT (LOWE, 2004) and SURF (BAY; GOOL, 2006). While SIFT and SURF have a
patent, ORB is under the same license as opencv (BRADSKI, 2000), the BSD License, so
it is free to use in any kind of application. ORB, and others features detection algorithms,
are ideal to detect common day to day objects like books, notebooks, calendars, etc. since
most of those items have a lot of features.

ORB works by improving the FAST (ROSTEN; DRUMMOND, 2006) and BRIEF
(CALONDER V. LEPETIT; FUA, 2010) algorithm, by adding a rotation component to
FAST and a learning method for de-correlating BRIEF features under rotational invari-

ance, leading to better performance in nearest-neighbor applications (RUBLEE et al.,
2011).

2.3.1 FAST

FAST algorithm is a keypoint detector used in ORB. It is known for its performance,

being faster than the classic algorithms, like SIFT, HARRIS and SUSAN (ROSTEN;
DRUMMOND, 2006). It uses a machine learning algorithm, for corner detection, and

8 COMPUTER VISION

Non-maximal suppression, to remove corners which have an adjacent corner with a higher
score function (ROSTEN; DRUMMOND, 2006). It was augmented with pyramid schemes
for scale (KLEIN; MURRAY, 2008) and Harris corner filter (HARRIS; STEPHENS, 1988)
to reject edges and provide a reasonable score (RUBLEE et al., 2011). Since FAST does
not include a orientation operator, a modification was made to using intensity centroid

(ROSIN, 1999).

2.3.2 oFAST

oFAST is the fast modification to include a orientation operator using intensity centroid.
The intensity centroid assumes that a corner’s intensity is an offset from its center and
this vector may be used to impute an orientation. Consider (p,q) a pair of non-negative
integers, r=p+gq is called the order of the moment and I(x,y) the pixel intensities, the
moments can be defined by:

Mpg = Z 2Py (x, y) (2.1)
x7y
Using this equation, the centroid can be defined with:
C=(—,—) (2.2)
The patch orientation from the corner’s center to the centroid can be defined as:

0 = atan2(mg1, myp); (2.3)

To improve the rotation invariance of this measure, it was made sure that the moments
are computed with x and y remaining within a circular region of radius r. If C' approaches
0, the measure may become unstable, but in the FAST algorithm that is rarely the case
(RUBLEE et al., 2011).

2.3.3 BRIEF

The BRIEF is a binary feature descriptor. Binary descriptors are faster to compute and
the similarity can easily be measured by the Hamming Distance algorithm (CALONDER
V. LEPETIT; FUA, 2010). It is a bit string description of an image patch constructed
from a set of binary intensity tests (RUBLEE et al., 2011). Consider a patch P, a binary
test 7 of size SxS can be defined as:

L)1 it p(e) <p(y),
m(piwsy) = {O otherwise (24)

where p(z) is the intensity of p at a point z. The feature is defined as a vector of n
binary tests:

falp) =Y 27 (pyasy) (2:5)

1<i<n

2.3 ORIENTED FAST AND ROTATED BRIEF 9

To increase its stability and repeatability, a Gaussian Smoothing Filter distribution
was used around the center of the patch.

2.3.4 rBRIEF

Since BRIEF suffers performance issues with in-plane rotation, the rBRIEF descriptor
was developed to solve this. The rBRIEF steers the BRIEF operator according to the
keypoint’s orientation (RUBLEE et al., 2011). For any feature set of n binary tests at
location (x;, y;), define the 2 x n matrix:

. {ml :1:} a0

Yy 5.y Un

Rotating this matrix using the corresponding rotation matrix Ry, we can construct
Sg:

Sp = RyS. (2.7)
Thus, we find the BRIEF operator as, considering f,,(p) as Equation 2.5:

gn(p,0) := fu(D)|(i,y:) € S (2.8)

To recover from the loss of variance in steered BRIEF, and to reduce correlation
among the binary tests, it was developed a learning method for choosing a good subset
of binary tests (RUBLEE et al., 2011). The learning algorithm consists of searching
among all possible binary tests to find ones that both have high variance, as well as being
uncorrelated.

2.3.5 RANSAC

Random Sample Consensus (RANSAC) (FISCHLER; BOLLES, 1981) is a mathematical
model used for fitting and estimate parameters from a mathematical model. Different
from others smoothing techniques, it uses a small initial set of data and enlarge this
set when possible (FISCHLER; BOLLES, 1981). If the sample has enough compatible
points, RANSAC would employ a smoothing technique, like least square, to improve the
estimation of the parameters from the data. On Figure 2.1, we can see the RANSAC
estimation compared to other models, like linear fit. We notice that since RANSAC is
random, it ignored the data on the lower part and estimated a model based only on the
more dense part of the graph.

It works by random sampling the observed data, and estimate a model based on it.
If the estimated model error is small, accept as answer. If the error is higher than the
tolerance, estimate another model. The algorithm ends when a model with few missing
data is found or when no model is found with the predetermined tolerance. If the latter
happens, it will use the model with the larger consensus found or terminate in failure.

In this thesis, RANSAC is used to find the homography between a sample image
keypoints and descriptors and the camera image keypoints and descriptors. This process
returns a set of four points and the geometry of the object, an exemple of this can be seen

10 COMPUTER VISION

1500 « « data

x « RANSAC data
RANSAC fit
exact system
—— linear fit
1000}
500
0

Figure 2.1: RANSAC execution.
Source: SciPy Cookbook

in Figure 1.3, where it compares an image of the object and the image of the camera.
This geometry and set of points is necessary for the object localization.

2.4 APRILTAGS

AprilTags are a lexicode-based system for generating tags. It is an improved version of
ARTags (FIALA, 2005), where it was empirically shown to reduce the false positive rate
compared to ARTag designs of similar bit length (WANG; OLSON;, 2016). The tags and
its variations, called families, can be seen in Figure 2.2. In this work, AprilTags are used to
detect objects with tags on it. Since those objects usually lack features, object detection
algorithms that uses features, like ORB, have problems detecting objects. When it comes
to grasping, use of an object with a tag gives two advantages when grasping: since we
are going to aim at the tag, as seen in Figures 2.3 and 2.4, the object can have any kind
of geometry and the tag has an ID, so if there multiple tags in a scene, it is possible to
identify an specific object by its ID.

The detection process starts by turning the image into a black-and-white image. After
this, an adaptive threshold is applied to find the minimum and maximum values in
a region around each pixel. With this minimum and maximum values, each pixel is
assigned a black or white color. The advantage of this approach is that the tags does not
need to be black-and-white initially, so as long tags have a darker and a lighter color, it
can be detected as seen in Figure 2.5. The problem of this approch we found was that

2.4 APRILTAGS 11

Tag16h6 Tag25h7 Tag25h9 Tag36h11 Tag36h9

Figure 2.2: AprilTags families.

Figure 2.3: AprilTag and an object.

on ambient with lots of light, it may cause trouble detection the tag or even generating
false detection. Reducing the camera brightness may help solve this problem.

Given the binarized image, the next step is to find edges which might form the bound-
ary of a tag (WANG; OLSON, 2016). The solution found was to segment the edges based
on the identities of the black and white components from which they arise, using the
union-find algorithm (CORMEN C. E. LEISERSON; STEIN, 2009). For every pair of
adjacent black and white components, the pixels of the boundaries are identified as a
distinct cluster.

With those clusters, the next step is to fit a quad to each cluster of unordered boundary
points, partitioning the points into four groups corresponding to line segments. First,
the points are sorted by angle around their centroid. Corner points are identified by
attempting to fit a line to windows of neighboring points, and finding the peaks in the
mean squared error function as the window is swept across the points (WANG; OLSON,
2016). The last step is to select four corners which result in the smallest mean squared
line fit errors. These quads outputs a set of candidates to be decoded.

To decode the tag, is used a simple XOR operation. The tag is identified as the code
with the smallest Hamming distance from the detected code. To improve the detection,
and avoid noises, the edges are refined by using the image gradient along the edges of the
candidate quads to fit new edges. Since tags are always dark on the inside, points whose

12 COMPUTER VISION

Figure 2.5: Yellow AprilTag from 3D printer.

gradient is not the expected sign are rejected.

As seem in John Wang and Edwin Olson (WANG; OLSON;, 2016), it takes around
0.072 microseconds to compute each pixel, so it should take around 22ms for a 640 x 480
image. This computational time should be enough to use in most real time applications,
like a navigation or real time localization.

Chapter

CONTROL SYSTEM

This chapter will discuss the control system used, the Position Based Visual Servoing.
On Section 3.1, will be shown related work that uses similar types of control scheme,
Section 3.2 will talk about the robots used, Section 3.3 will talk about Homogeneous
Transformation, Section 3.4 will talk about the Forward and Inverse Kinematics, Section
3.5 will show the trajectory planning algorithm, Section 3.6 will show how to convert a
pixel position to Cartesian Coordinates using point cloud and 3.7 will discuss the control
system used.

3.1 RELATED WORK

Position Based Visual Servoing is a common control architecture in robotic, been used
in multiple works through the years. The paper (WILSON; HULLS; BELL, 1996) shows
its application on robotic and how this control system works. On the series of papers
by Francois Chaumette and Seth Hutchinson (CHAUMETTE; HUTCHINSON, 2007a)
(CHAUMETTE; HUTCHINSON, 2007b) they use computer vision data to control the
motion of a robot while teaching the basics, discussing performance, stability and other
problems. Position-based visual servoing robotic capture of moving target enhanced by
Kalman filter (LAROUCHE; ZHU, 2015) uses Position Based Visual Servoing to capture
a moving target using a Kalman Filter. While most works use this control scheme by
itself, it is possible to mix it with other common visual control system, Image Based
Visual Servoing, to generate better results, as seen in (KIM; OH, 2007).

3.2 ROBOTIC SYSTEM

The robot manipulator used in this work is the URS, a robotic manipulator developed by
Universal Robots, and the JACO by Kinova. According to Universal Robots (ROBOTS,
2019b), the UR5 features:

e Six Degrees of Freedom.

13

14

CONTROL SYSTEM

Each joint has a working range of 360°and a maximum speed of 180°/Sec.
Can carry up to 5 kg.

Support to Robotiq Grippers.

ROS driver.

Since the URbH doesn’t come with a gripper, the Robotiq 2-finger was used since it
can be easily installed on the URb5. The gripper, as seen in Figure 3.1, features, as seem
in (ROBOTIQ, 2019):

Figure 3.1: URbH with Robotiq Gripper.
Source: Universal Robots.

Plug and Play kit for Universal Robots.

Adjustable stroke, speed and force.

Detect if an object is picked.

Two versions: 85 mm and 140mm. In this thesis, the 140mm version was used.
Form-fit grip payload of 2.5 kg.

Position resolution of 0.6mm.

Speed of 30 to 250 mm/s.

Meanwhile the JACO, as seem in figure 3.2, features (KINOVA, 2019):

Three fingers gripper.

3.3 HOMOGENEOUS TRANSFORMATION 15

Figure 3.2: JACO robotic arm.
Source: Kinova Robots.

e Can carry up to 5.2kg.

90cm reach.

e Maximum linear speed of 20 cm/s.

Light rain resistant.

3.3 HOMOGENEOUS TRANSFORMATION

The Homogeneous Transformation is used to compute the projections and perspectives
transformations of an object (BRIOT S.; KHALIL, 2015). A set of the basic homogeneous
transformation for translation and rotation about the (x,y, z) axes respectively, is given
by (SPONG; VIDYASAGAR, 2005):

1 00 a

Trans(z,a) = 8 (1) (1) 8 (3.1)
0 0 0 1]
[1 0 0 0]

Trans(y,b) = 8 Cl) (1) 8 (3.2)
000 1
(1 0 0 0]

Trans(z,c) = 8 (1) (1) 2 (3.3)
000 1

16 CONTROL SYSTEM

1 00 a
01 0%
Trans(a,b,c) = 00 1 ¢ = Trans(z,a)Trans(y,b)Trans(z, c) (3.4)
0001
(1 0 0 O]
0 ¢, —54, O
Rot(z,a) = 0 s, c, 0 (3-5)
0 0 0 1]
-Cﬂ 0 S8 O-
0 0 0 O
Roty. B) = | _s, 0 ¢ 0 (3:6)
0 0 0 1
[c, —s, 0 0]
sy ¢y 00
Rot(z,v) = 0 0 00 (3-7)
0 0 01
Rot(a, 8,7) = Rot(z,7)Rot(y, B) Rot(x, o) (3-8)

With equations (3.4) and (3.8), we can define the Homogeneous Transformation Ma-
trix H as:

H = Rot(«a, 8,v)Trans(a, b, c) (3.9)

In this work, homogeneous transformation will be used mostly to solve the problem
of converting the camera coordinates of an object to the arm coordinates, as seen in
Figure 3.3, where we need to convert the position p, relative to the camera axis, to its
position relative to the arm axis. To do this, consider the robotic manipulator origin as
o(z,y,z), the camera origin o’(z’,y’,z’), a point p(z”,y”,z”) with orientation 0’(a’,5"y’),
the position of the camera relative to the origin o as c¢(zc,yc,zc) and the camera orientation
relative to the o axis as 0(«,(,7). To convert the position p, relative to the camera
origin o’; to the robotic manipulator coordinate o, we can use the following homogeneous
transformation:

T
y1| = Rot(a, 8,v)Trans(xc,ye, zc)Trans(z",y", 2")Rot(a/, B, 7") (3.10)
21

3.4 KINEMATICS

Kinematics is used to describe the motion of the robotic manipulator without consid-
eration of the forces and torques causing the motion (SPONG; VIDYASAGAR, 2005).
The concept of kinematics can be divided into two: Forward and Inverse Kinematics,

3.4 KINEMATICS 17

Z
Py e——

o I:,wy. s

X

<&

Figure 3.3: Eye on hand set up.

where the former is used to determine the position and orientation of the manipulator
end-effector using the joints positions, and the latter is to determine the joints positions
given the end-effector pose. While solving the Forward Kinematics can be a trivial task,
the Inverse Kinematics can become a complex task on robotic manipulators with four or
more degrees of freedom.

To solve Forward and Inverse Kinematics for the URS in this thesis, the equations
found on Kinematics of a UR5 (ANDERSEN, 2018) were used. The JACO on ROS
already came with its Forward and Inverse Kinematics solved by the manufacturer. These
equations were deduced based on its Denavit-Hartenberg parameters and geometry.

3.4.1 Forward Kinematics

To get the Forward Kinematics, it is used the Denavit-Hartenberg (DH) convention. In
this convention, each homogeneous transformation A; is represented as a product of four
basic transformations (SPONG; VIDYASAGAR, 2005):

Co, —389,Cq; 50,5 a;Co,
A; = Rot(z,0;)Trans(z,d;)Trans(z, a;) Rot(z, a;) = Sgi C(ani _Cceisai aljei
0 0 0 1
(3.11)

Where a;, «;, d;, 0; are the link length, link twist, link offset, and joint angle, respec-
tively. The reference used to define those variables can be seen in Figure 3.4. To be able
to define those values, first each joint must be assigned with coordinates frames. The

URb DH parameters can be seen in the Table 3.1, as seen in the manufacturer’s website
(ROBOTS, 2019a).

Using the DH parameters, the general transformation between links ¢ - 7 and ¢ are
given by the matrix:

18 CONTROL SYSTEM

Y, 21""--'-?_?_2
NS
- : -Shoufde;w
5 Az,
d: elbow
- base
Figure 3.4: Joit Axis Reference.
Source: (ANDERSEN, 2018)
Kinematics | theta [rad] | a[m] d[m] | alpha [rad]
Joint1 0 0 0.1625 /2
Joint2 0 -0.425 0 0
Joint3 0 -0.3922 0 0
Joint4 0 0 0.1333 /2
Jointh 0 0 0.0997 - /2
Joint6 0 0 0.0996 0
Table 3.1: UR5 DH parameters.
oSy, —Sing, 0 ai_1
il _ $iMp,COSq, , C€0S9,COSq,; |, —SiMg, , —SiNg, ,d; (3.12)
! $iMp, SN, , C€OSg,SIMq, , COSq, , COSq, ,d; '
0 0 0 1

3.4.2 Inverse Kinematics

The Inverse Kinematics is used to calculate the joint angles 6, ¢ based on the desired
position and orientation of the arm end effector, specified as the transformation Tp.
The method used in the Kinematics of a UR5 (ANDERSEN, 2018) was the geometric
approach, where the joints angle are calculated based on the geometry of the arm and its
DH parameters. When using the geometric approach, first we need to consider the type
of joints of the robotic manipulator. On the UR5 we have six rotary joints, so, to find the
joint angles #,_¢, we need to apply geometry and trigonometry equations on each joint.
For example, on Figure 3.5, we have a single rotary joint, so the inverse kinematics can
be trivial to find. Using trigonometry, we can find the joint angle to move the arm to the
position (z.,y.) as:

0, = atan2(z., y.) (3.13)

3.4 KINEMATICS
o

Yo Lo

@_.,—_.—\.01 —

Figure 3.5: Rotary Joint example.

Source: Robot Modeling and Control (SPONG; VIDYASAGAR, 2005).

19

While the inverse kinematics can be trivial on simple robots, finding it on robots with
more than three joints is no trivial task, so, in Thesis, we used the equations found in
Kinematics of a UR5 (ANDERSEN, 2018), where they were able to successfully derive
the joint equations through geometry. Considering the notation P? as he origin of frame
6 seen from frame 0 and Yy as a unit vector giving the direction of y-axis of frame 6 seen
from frame 0, the joint angles necessary to make the arm go to a position (z,y, z) with

orientation (ox, oy, 0z) can be defined as:

d4
0, = atan2(P?
VP + (7S,

5y Pg?x) + acos(

)

Py, sinfy — Py, cost) — d4)

05 = tacos(7

6 o 6 6 o 6
—Xg,sinty + Yy, costy Xg, sinth — Yy, costh

0 = atan?2 : ,

s = atan2(sinbs sinbs

Plo2_ g2 g2

93 :iacos(| 4;tz’) as

2&2&3
n 1 ., —assinbs
0y = atan2(—Py, — P;,) — asin(————)
|P4£L'Z‘
04 = atan2(X3,, X3,)

(3.14)

(3-17)

(3.18)

(3-19)

Where the two solutions in Equation 3.14 correspond to the shoulder being “left” or
“right”, in Equation 3.15 correspond to the wrist being “up” or “down” and in Equation

3.17 correspond to “elbow up” and “elbow down”.

20 CONTROL SYSTEM

3.5 TRAIJECTORY PLANNING

To plan each joint trajectory, Quintic Polynomial Trajectories was used. This trajectory
planner is used to ensure a smooth trajectory between two points. It uses variable velocity
and acceleration, making sure that the joints will move faster when far away from the
destination and slow down when getting closer. Different from the Cubic Polynomial
Trajectories, Quintic Polynomial Trajectories does not generate a jerk on the joints,
thanks to the variable acceleration (SPONG; VIDYASAGAR, 2005).

We consider a quintic trajectory as:

q(t) = ap + art + agt® + ast® + agt* + ast® (3.20)

Where, ¢ is the position and a is a constant value. By deriving ¢, we can obtain the
velocity v and acceleration « as:

go = Qg + arty + CLQt?) + agtg + a4té + a5t8 (3.21)
Vo = a1 + 2a2t0 + 3a3t3 + 4a4t3 + 5015153 (3.22)
g = 2ay + 6asty + 12a4t3 + 20ast; (3.23)
qf = Qo + Cthf + agtfc + Clgt?c + Cl4t;1c + CL5tE} (324)
vy = ap + 2asty + 3a3tfc + 4a4t§’c + 5a5t;1c (3.25)
af = 2ay + 6asty + 12a4t7 + 20ast} (3.26)
Which can be written as:
1ttt t o] [ao] [ao]
0 1 2ty 3t2 43 5tp | | vo
0 0 2 6t 121% 20t§ Qo Qg
2 3 4 5 = (3-27)
0 0 2 6ty 12t5 20t} |as| |ay]

With equation 3.27, we can define the constant values and find the position, velocity
and acceleration over the trajectory. Since the UR5 and the JACO has six degrees of
freedom, the equation has to be applied to each joint individually.

3.6 3D LOCALIZATION

After detecting the object and finding its 2D position on the image plane, it is necessary
to transform its 2D position to XYZ coordinates. To do this, the most common method
is using the pinhole camera model, as seen in (FORSYTH; PONCE, 2003), where the
camera needs to be calibrated to find the camera intrinsic parameters. Based on this
parameters, it is possible to correlate a pixel to a 3D point in space. While this method
is used on RGB camera, on a RGB-D camera it is possible to make a 2D to 3D con-
version by using the depth sensor. This approach is more efficient, since it removes the

3.7 POSITION-BASED VISUAL SERVOING 21

need to calibration and used the precision of the depth sensor. Since ROS is used in this
research, its point cloud format was used to avoid the need for external dependencies like
Point Cloud Library(PCL). By following the ROS point cloud documentation (POINT-
CLOUD2..., 2019), we can get the Algorithm 1 to convert a pixel to XYZ on ROS point
cloud format, where (u,v) are the pixel coordinates, pCloud the point cloud data array
and (X,Y,Z) the final 3D position.

Algorithm 1 Pixel to 3D

Require: uv >0 and v > 0

arrayPosition < v x pCloud.row_step + u x pCloud.point _step
arrayPosX < arrayPosition + pCloud. fields|0].of fset
arrayPosY < arrayPosition + pCloud. fields[1].of fset
arrayPosZ < arrayPosition + pCloud. fields|2].of f set

X « pCloud.datalarrayPosX]

Y «+ pCloud.datalarrayPosY |

Z <+ pCloud.datalarrayPosZ]

While this approach returns a precise measurement of the object position, since the
point cloud is made by the camera infra-red, it suffers some problems like interference from
the environment and the object material, which may result in some wrong measurements.
Another weak point when compared to classic pinhole model is the need for more memory
from the computer, since the point cloud is a three-dimensional array.

3.7 POSITION-BASED VISUAL SERVOING

Position-Based Visual Servoing (PBVS) is a visual servoing control method, where the
system will depend of the position in space of a target. Different from image-based visual
servo (IBVS), where the control is based solely on the image plane, on PBVS it is needed
the target pose in Cartesian space with respect to the camera. Since in this work we
are going to work with a robotic manipulator, that only receives commands in Cartesian
space, we are going to need a control system that uses Cartesian positions, making the
PBVS ideal for this application. To apply the PBVS, firstly we need to estimate the
pose of the of the target and, to do so, we need an algorithm to detect the object. After
its detection, we find its position in 2D space and convert its position to 3D. With the
3D pose, we can estimate the required motion to the target pose. In Figure 3.6, we can
see a basic PBVS control system. The main weak point of this system is the need of an
accurate pose estimation of the target, so a precise calibration of intrinsic and extrinsic
parameters is needed. Since we are using point cloud to estimate the 3D pose, the main
problem becomes the estimation of the extrinsic parameters. The control system used in
this work can be seem in Figure 3.7, where it will receive a desired target, by the ID of
the tag or by a reference image, and will send a joint trajectory to the manipulator after
the execution of the relevant algorithms.

This system will run on each ROS loop, where each loop has 0.1 seconds, and the end
condition will depend of the application.

22

PEVS |

Joint
controller

- control |_.

Pase

Feature

estimation |

extraction

Figure 3.6: PBVS control system example.

CONTROL SYSTEM

Source: Robotics, Vision and Control (CORKE, 2017)

3.7 POSITION-BASED VISUAL SERVOING

Target object

and desired
algorithm
N r,
s =
¥
Object Detection
ORB
AprilTag
Pixel Position
Sensor Data ¥
Localization
RGE image
, Pixel to 3D
Point Cloud
. " Homogeneous Transformation
Joint Position
4 End Effector Pose
¥
Kinematics

inverse Kinematics

Quantic Polinomial Trajectory

Joint Trajectory

Robotic
Manipulator

N, r

Figure 3.7: PBVS control system.

Chapter

RESULTS

In this chapter we are going to discuss the results of this work. The results will be
separated in two sections: Detection and Pose Estimation, where visual data from both
algorithms are going to be compared, and Pick and Place System, where each algorithm
are going to have multiples experiments. All the algorithms discussed were implemented
on Ubuntu 16.04 using ROS Kinetic, C++14, OpenCV3 and Eigen3.

4.1 DETECTION AND POSE ESTIMATION

In this section, we are going to compare firstly ORB to SURF and SIFT to detect objects
and then AprilTags and ORB, where the object will be placed in two positions from the
camera. We are going to compare visual data, like pose estimation, pose variation on
each frame and reliability from the algorithms while using the visual sensor Intel D435.

4.1.1 Visual Data

4.1.1.1 ORB vs SIFT vs SURF In this experiment, we are going to compare the
detection of an object while using ORB, SIFT and SURF. When it comes to detection,
all three algorithms can detect objects rich in features, as seen in Figures 4.1a, 4.1b and
4.1c.

Comparing the estimated position related to the camera, as seen in Figures 4.2, 4.3
and 4.4, we notice that they have similar behaviour when it comes to detection, with a
small variation in millimeters scale between each frame. On Table 4.1, we can see the
mean and standard deviation of the object position, where, while the mean seems similar,
SIFT returns a better standard deviation and SURF the worse deviation.

Doing the same experiment, but with the object rotated around 90 degrees, it is
noticeable that some with the algorithms starts to lose some quality of the estimation,
as seen from the Figures 4.5, 4.6 and 4.7. On Table 4.2 we notice that while ORB and
SIFT were able to maintain some consistence in the detection, SUFT detection deviation
got worse comparing to the last experiment.

24

4.1 DETECTION AND POSE ESTIMATION 25

(a) ORB detection. (b) SIFT detection. (c) SURF detection.
Figure 4.1: Object detection from the algorithms.

X-axis comparison
0.0482

4= ORB X-axis position
—&— SURF X-axis position
—e— SIFT X-axis position |1

0.048

@
S
o 0.0476 -

0.0474 |-

0.0472
0

10 20 30 40
Sample

Figure 4.2: Object X position.

Y-axis comparison
0.0075

—4— ORB Y-axis position
—&— SURF Y-axis position
—6— SIFT Y-axis position

0.007

0.006 -

0.0055
0

. I
10 20 30 40
Sample

Figure 4.3: Object Y position.

When it comes to execution time, ORB took around 0.032 seconds do detect, while
SURF took 0.045 seconds and SIFT 0.062 seconds. While they can detect a object rich on
features, SIF'T and SURF had trouble detecting objects with a small number of features,
like an AprilTag. ORB could detect the tag since it generates a greater amount of features

26 RESULTS
I I EE===
0458 - { L»« l
Figure 4.4: Object Z position.
X-Mean | Y-Mean Z-Mean | X-Std Dev | Y-Std Dev | Z-Std Dev
ORB | 0.048067 | 0.0064450 | 0.45900 | 0.00013919 | 0.00022843 | 0.00044278
SURF | 0.047962 | 0.0064310 | 0.45900 | 0.00039818 | 0.00037014 | 0.00049694
SIFT | 0.047962 | 0.0064310 | 0.45800 | 0.000037466 | 0.00030601 | 0.00035784

Table 4.1: Comparison between mean and standard deviation from the algorithms on the
object position.

0.031

Figure 4.5: Object X position while rotated.

when compared to other feature algorithms (TAREEN; SALEEM, 2018).

4.1.1.2 ORB vs AprilTag: Distance = 0.36 meters For this experiment, the
target was at 0.36 meters away from the visual sensor. On Figures 4.8 and 4.9, it is
noticeable that in both cases the object is detectable with some differences: while the
ORB detects the entire object, giving a better notion of its dimensions, the AprilTag can
only detect the tag on it. Also, since we are detect the object center, both are going

4.1 DETECTION AND POSE ESTIMATION

-0.014

-0.0145 |-

-0.015 |-

ers)

Position(mete

-0.016 -

-0.0165 |-

-0.017
0

00155 |- F4r S

20 30

Sample

Figure 4.7: Object Z position while rotated.

X-Mean | Y-Mean Z-Mean | X-Std Dev | Y-Std Dev | Z-Std Dev
ORB | 0.028483 | -0.015460 | 0.44400 | 0.00037457 | 0.00012874 | 0.00052557
SURF | 0.029142 | -0.016183 | 0.44400 | 0.00057289 | 0.00060230 | 0.00056494
SIFT | 0.029865 | -0.015460 | 0.44400 | 0.00026553 | 0.00036342 | 0.00048643

27

Table 4.2: Comparison between mean and standard deviation from the algorithms on the
object position.

to return a slightly different position. One of the biggest disadvantage of the ORB is
that, while it can detect rotated objects, it doesn’t give a 3D pose, but it is possible
to get its orientation relative to the Z-axis by applying basic geometry on the red top
line (CONCEICAOQO; OLIVEIRA; CARVALHO, 2018). To do this, consider the point
po=(zo,yo) and the point pf= (zf,yf), defined by the red line on top of the object, we can
define the orientation of the object as:

28 RESULTS

O = atan2(yf — yo,xf — zo)

(4.1)

Figure 4.8: Experiment 1.1.1: ORB detection.

Figure 4.9: Experiment 1.1.1: Tag detection.

Comparing the sensor data, seen in Figures 4.10, 4.11 and 4.12, we notice that while
both return a similar position, with a small different thanks to the difference in the center
position, the ORB has a bigger position variation. Since the tag isn’t a rich feature
object, any mismatches with features in the ambient may cause position variations on its
detection.

Analyzing Table 4.3 we can see that while the mean of the position seems close, the
standard deviation (Std Dev) of the ORB algorithm is bigger than the AprilTag, showing
the instability of the detection.

X-Mean | Y-Mean Z-Mean | X-Std Dev | Y-Std Dev Z-Std Dev
ORB -0.024378 | 0.015023 | 0.35900 | 0.0016830 | 0.0018604 0.00063669
AprilTag | -0.024243 | 0.0079201 | 0.35700 | 0.00026038 | 0.000010305 | 0.00046460

Table 4.3: Experiment 1.1.1: Comparison between mean and standard deviation from

both algorithms on its position.

4.1 DETECTION AND POSE ESTIMATION 29

Figure 4.10:

Figure 4.11:

Figure 4.12:

X-axis comparison
-0.018

—+— ORB X-axis position
—&— AprilTag X-axis position

-0.022 -

0024 | FL MR LR ALV I LV LRI AL

Position(meters)

-0.026

-0.028

-0.032
0

20 40 60 80 100
Sample

Experiment 1.1.1: ORB vs AprilTag x-axis position.

Y-axis comparison
0.025

s)

@ 0015

Position(mete

e
°

0.005 -

0 20 40 60 80 100
Sample

Experiment 1.1.1: ORB vs AprilTag y-axis position.

Z-axis comparison

0361
—+— ORB Z-axis position
—&— AprilTag Y-axis position
0.36 -
0.359
@
8
5
£ 0358 e 90 o® @ 900 0 ®o o ¥ o oloo M
S
3
8
o«
0357 - & dbédmmED® b oW & 6 bt M & & dun 1
0.356 -
0.355 .
0 20 40 60 80 100
Sample

Experiment 1.1.1: ORB vs AprilTag z-axis position.

30 RESULTS

Comparing the orientation, seen in Figures 4.13, 4.14 and 4.15, we see that the ORB
doesn’t return a orientation for the X and Y axis, while return for the Z-azis. We notice
a variation of a couple degrees on the AprilTag detection, and the angles on the X and
Y axis aren’t zero. That happens since the camera may no be perfectly aligned and the
object is on a uneven surface.

X-axis comparison

02

015 [

Orientation(radian:

01 -

0 20 40 60 80 100
Sample

Figure 4.13: Experiment 1.1.1: ORB vs AprilTag x-axis orientation.

Y-axis comparison

L

015

ians)

0.1 [

Orientation(radi

0.05 H

0 20 40 60 80 100
Sample

Figure 4.14: Experiment 1.1.1: ORB vs AprilTag y-axis orientation.

On table 4.4 we see a similar result as last table, that while the mean may be similar
on the Z-Auzis, the Std Dev from ORB is higher than the from AprilTag.

The second part of this experiment, the object was rotated around 95 degrees on the
Z-Azis while keeping a similar distance to the camera, as seen in Figure 4.16, where we
can also see that the ORB can keep the detection of the object even with a 90 degree
rotation in relation to the reference image.

Comparing the sensor data relative to position, seen in Figures 4.17, 4.18 and 4.19,
we see similar results with a sightly offset on the position and a small variation on ORB

4.1 DETECTION AND POSE ESTIMATION

-adian:

on(r

Orientati

60 80

100

31

Figure 4.15: Experiment 1.1.1: ORB vs AprilTag z-axis orientation.

X-Mean | Y-Mean | Z-Mean | X-Std Dev | Y-Std Dev | Z-Std Dev
ORB 0 0 0.016128 | 0 0 0.10526
AprilTag | 0.30715 | 0.18251 | 0.068406 | 0.024184 0.023283 0.025649

Table 4.4: Experiment 1.1.1: Comparison between mean and standard deviation from
both algorithms on its orientation.

Figure 4.16: Experiment 1.1.1: ORB 90 degree detection.

estimation. On Table 4.5 we notice a similar pattern found on the last experiment, with
similar values for the standard deviation, showing that both algorithms can remain with
the same quality of detection even when the object is subject to rotation.

X-Mean Y-Mean Z-Mean | X-Std Dev Y-Std Dev 7Z-Std Dev
ORB 0.0042219 | 0.0038176 | 0.35500 | 0.0017094 0.0019355 0.00053813
AprilTag | 0.011738 | 0.0067193 | 0.35500 | 0.000009762 | 0.000005599 | 0.0002958

Table 4.5: Experiment 1.1.1: Comparison between mean and standard deviation from
both algorithms on its position when rotated 95 degrees.

Comparing the orientation, seen in Figures Figures 4.20, 4.21 and 4.22, we notice a

32 RESULTS

X-axis comparison

0.012 " po L -

—+— ORB X-axis position
—&— AprilTag X-axis position

0.008

meters)

= 0.006

Position

0.004

0.002

L J
0 20 40 60 80 100
Sample

Figure 4.17:
on 7 axis.

Experiment 1.1.1: ORB vs AprilTag x-axis position with 95 degree rotation

Y-axis comparison
0.008

0.006 -

% 0004
s
T
£
£
S

-0.002
0

Sample

Figure 4.18: Experiment 1.1.1: ORB vs AprilTag y-axis position with 95 degree rotation

on 7 axis.

huge instability on ORB, which can be a problem when dealing with grasp on objects
with any rotation. Table 4.6 confirms the results from the first part of this experiment,
but with a even greater Std Dev on the Z-Auwis.

X-Mean | Y-Mean | Z-Mean | X-Std Dev | Y-Std Dev | Z-Std Dev
ORB 0 0 1.8019 0 0 0.12983
AprilTag | 0.262 0.18282 | 1.6671 0.00098001 | 2.2324e-16 | 0.0016720

Table 4.6: Experiment 1.1.1: Comparison between mean and standard deviation from

both algorithms on its orientation when rotated 95 degrees.

4.1 DETECTION AND POSE ESTIMATION 33

Z-axis comparison
0.356

—+— ORB Z-axis position
—&— AprilTag Y-axis position

0.3555 |-

0.3545 [

0.354 -

0.3535 - - . - : 1
0 20 40 60 80 100
Sample

Figure 4.19: Experiment 1.1.1: ORB vs AprilTag z-axis position with 95 degree rotation
on 7 axis.

X-axis comparison

Orientation(radians)

J
0 20 40 60 80 100
Sample

Figure 4.20: Experiment 1.1.1: ORB vs AprilTag x-axis orientation with 95 degree rota-
tion on 7 axis.

4.1.1.3 ORB vs AprilTag: Distance = 0.57 meters This experiment will be
conducted in a similar way to the previous one, but with a distance of 0.57 meters from
the camera to the object. On Figures 4.23 and 4.24, we can see that while the AprilTag
can detect the object without issues, ORB is starting to have problems finding features
from this far, resulting in a bad estimation of its position and geometry.

On Figures 4.25, 4.26 and 4.27, we see the comparison between the (z,y,z) position
estimated by the algorithms. It is noticeable that, even with a similar results compared
to last experiment, with a standard variation. The “empty” spots on the ORB mean that
the object was completely lost for those frames.

On Table 4.7 we can see that while the mean of the position from both algorithms
are close, the Std Dev from the ORB is more than ten times higher than we saw in Table
4.3, showing that from this distance the ORB becomes unreliable. Meanwhile, AprilTag
is able to maintain the same detection quality from the last experiment, showing how

34

Figure 4.21: Experiment 1.1.1:

tion on Z axis.

Orientation(radians)

0.2

015 [

01 -

0.05 -

RESULTS

| —o— ApriTag Y-axis orientation

J
20 40 60 80 100
Sample

ORB vs AprilTag y-axis orientation with 95 degree rota-

—+— ORB Z-axis orientation
—&— ApilTag Z-axis orientation

. . . . J
20 40 60 80 100
Sample

Figure 4.22: Experiment 1.1.1: ORB vs AprilTag z-axis orientation with 95 degree rota-
tion on Z axis.

robust the algorithm is.

X-Mean Y-Mean Z-Mean | X-Std Dev | Y-Std Dev | Z-Std Dev
ORB -0.017387 | 0.0015077 | 0.57100 | 0.035116 0.037192 0.10429
AprilTag | -0.0099127 | -0.0068382 | 0.56900 | 0.00000998 | 0.00000688 | 0.000573

Table 4.7: Experiment 1.1.2: Comparison between mean and standard deviation from

both algorithms on its position.

Comparing the orientation detection, on Figures 4.28, 4.29 and 4.30, a small offset on
the angles, since the camera may no be perfect aligned to the robotic arm axis and the
object is a uneven surface.

On Table 4.8, we see a increase in the standard deviation from both algorithms, but

4.1 DETECTION AND POSE ESTIMATION 35

”~

Figure 4.24: Experiment 1.1.2: ORB detection.

X-axis comparison

—+— ORB X-axis position
—&— AprilTag X-axis position

Position(meters)

J
0 20 40 60 80 100
Sample

Figure 4.25: Experiment 1.1.2: ORB vs AprilTag x-axis position.

while the AprilTag had a small increase, ORB doubled in relation to Table 4.4 and had
Z-mean value totally different than the one from AprilTag.

36

Figure 4.26:

Figure 4.27:

RESULTS

Y-axis comparison

0.05 T T T T
== ORB Y-axis position
—©— ApriTag Y-axis position
@ -0.05 V u
s
2
E
£
S
‘@
]
a -0
0.15 -
0.2

0 20 40 60 80 100
Sample

Experiment 1.1.2: ORB vs AprilTag y-axis position.

Z-axis comparison
07 T T T T

—+— ORB Z-axis position
—&— AprilTag Y-axis position

Position(meters)

05

Sample

Experiment 1.1.2: ORB vs AprilTag z-axis position.

X-axis comparison
0.4

03 ®

Orientation(radians)
-
S

01|

Sample

Figure 4.28: Experiment 1.1.2: ORB vs AprilTag x-axis orientation.

4.1 DETECTION AND POSE ESTIMATION 37

Y-axis comparison

tation
tation

—+— ORB Y-axis orien
T | —e— ApriTag Y-axis orient

-adians)

Orientati

0.05 -

J
0 20 40 60 80 100
Sample

Figure 4.29: Experiment 1.1.2: ORB vs AprilTag y-axis orientation.

Z-axis comparison

—+— ORB Z-axis orientation
—&— ApiilTag Z-axis orientation

adians)

Orientatior

Sample

Figure 4.30: Experiment 1.1.2: ORB vs AprilTag z-axis orientation.

X-Mean | Y-Mean | Z-Mean | X-Std Dev | Y-Std Dev | Z-Std Dev
ORB 0 0 0.36717 | O 0 0.67262
AprilTag | 0.30370 | 0.11632 | 0.063791 | 0.044292 0.026089 0.0033716

Table 4.8: Experiment 1.1.2: Comparison between mean and standard deviation from
both algorithms on its orientation.

For the second part of this experiment, the target object was rotated 15 degrees on
the Y axis. Figures 4.31 and 4.32 show the detection of the object. While AprilTag
has no problems detecting it, ORB shows the same problem detecting objects from this
distance.

The position data can be seen in Figures 4.33, 4.34 and 4.35. It is noticeable that
while both algorithms are return a good estimation in this case, ORB returns a value out
of the curve for one frame due to wrong estimation.

On Table 4.9 we see similar values for the position of the object using both algorithms

38 RESULTS

>~

Figure 4.31: Experiment 1.1.2: Tag Detection while rotated 15 degrees on the Y axis.

Figure 4.32: Experiment 1.1.2: ORB detection while rotated 15 degrees on the Y axis.

X-axis comparison

Position(meters)

100

Figure 4.33: Experiment 1.1.2: ORB vs AprilTag x-axis position while rotated 15 degrees
on the Y axis.

4.1 DETECTION AND POSE ESTIMATION

—+— ORB Y-axis position
—&— AprilTag Y-axis position

.
40
Sample

L L
60 80

J
100

39

Figure 4.34: Experiment 1.1.2: ORB vs AprilTag y-axis position while rotated 15 degrees
on the Y axis.

—4— ORB Z-axis position
—6&— AprilTag Y-axis position

40
Sample

60 80

100

Figure 4.35: Experiment 1.1.2: ORB vs AprilTag z-axis position while rotated 15 degrees
on the Y axis.

while ORB has a higher standard deviation.

X-Mean Y-Mean Z-Mean | X-Std Dev Y-Std Dev | Z-Std Dev
ORB -0.012715 | 0.0024334 | 0.57000 | 0.0055426 0.00990 0.00651
AprilTag | -0.011787 | -0.0068502 | 0.57000 | 0.000011630 | 0.00000676 | 0.000562

Table 4.9: Experiment 1.1.2: Comparison between mean and standard deviation from
both algorithms on its position while rotated 15 degrees on the Y axis.

Figures 4.36, 4.37 and 4.38 show the orientation over time. While the X axis orienta-
tion got some lost values, all the orientations values are inside the expetected parameters.
On Table 4.10 we get values inside the expected parameters, with the Z-Mean value
from both algorithms close, but, the standard deviation from ORB from this distance

40 RESULTS

—4— ORB X-axis orientation
—&— ApiilTag X-axis orientation

Orientati

0 20 40 60 80 100
Sample

Figure 4.36: Experiment 1.1.2: ORB vs AprilTag x-axis orientation while rotated 15

degrees on the Y axis.

Y-axis comparison

—— ORB Y-axis orientation
—6— AprilTag Y-axis orientation

Orientation|

0 20 40 60 80 100
Sample

Figure 4.37: Experiment 1.1.2: ORB vs AprilTag y-axis orientation while rotated 15

degrees on the Y axis.

makes the orientation estimation not trustworthy.

X-Mean | Y-Mean | Z-Mean X-Std Dev | Y-Std Dev | Z-Std Dev
ORB 0 0 -0.050598 | 0 0 0.19742
AprilTag | -0.064378 | -0.22437 | 0.015351 | 0.060445 0.031385 0.0096150

Table 4.10: Experiment 1.1.2: Comparison between mean and standard deviation from

both algorithms on its orientation while rotated 15 degrees on the Y axis.

4.2 PICK AND PLACE SYSTEM

For these experiments, AprilTags and ORB will be used for object detection, where
the first experiment will feature ORB picking a common day to day object, a calendar,

4.2 PICK AND PLACE SYSTEM 41

Z-axis comparison

—+— ORB Z-axis orientation
—&~— ApiilTag Z-axis orientation

Orientati

Sample

Figure 4.38: Experiment 1.1.2: ORB vs AprilTag z-axis orientation while rotated 15
degrees on the Y axis.

the second will compare ORB and AprilTag to grasp objects and the rest will feature
AprilTag to grasp objects. Having an extra object with a tag attached to the target will
avoid problems related to the object geometry, since we are using a single gripper with
two fingers, in the URb case, and three fingers, in the JACO case. The experiments will
features to types of systems: eye in hand and eye to hand, where the eye in hand will
use the Intel Realsense camera and the eye to hand system will use the Microsoft Kinect
image sensor.

4.2.1 Object on a table

In this experiment, the robotic manipulator JACO will be used with the visual sensor
Microsoft Kinect. The system will use an eye to hand set up, as seen in figure 4.39, due
to the Kinect limitations.

The arm will move from its initial position, seen in Figure 4.39, to the desired object
position, in this experiment case, a calendar seen in Figure 4.40. After grasping the
object, it will lift it and move to another position.

Figures 4.41 and 4.42 show the trajectory and velocity over time for cubic polynomial
trajectory, according to the robot sensors, where it accelerates when it is far and slows
down when approaching the objective.

When comparing the estimated object position by the Kinect with the end effector
position, as seen in Figure 4.43, the object can be seen following the arm after the grasp. It
is also possible to see that when the grasp happens, it covers some features from the object,
resulting in the RANSAC estimating the object center in different positions, causing the
“noise”, and, some times, total loss. If the object had a low amount of features, even
if it was detectable, after the grasp the object would be completely lost. On Table 4.11
we can see the Initial Position of the arm, the position where the manipulator picks the
object and the final position acording to the sensors.

42 RESULTS

Figure 4.39: Initial position of the arm.

Figure 4.40: Object to be grasped.

4.2.2 Object inside a box

In this experiment, we are going to compare ORB and AprilTag to grasp objects using
tags. On our previously published article, (CONCEICAO; OLIVEIRA; CARVALHO,

4.2 PICK AND PLACE SYSTEM 43

Joints Position(radians)

Joint1
= Joint2
5 Joint3
Jointd

Joints
Joint8

Figure 4.41: Joint positions over time - experiment 1.1.

Joints Velocity(radians/sec)

Joint1
Joint2
Joint3
Jointd | 7
Joints
Joint6

J1 LY T
'nun-iﬁﬂw

0 20 40 60 80 100 120 140 160 180 200

Figure 4.42: Joint velocities over time - experiment 1.1.

2018), ORB was applied to detect and grasp a calendar, as seen in Figure 4.44. Since
the calendar was an object rich with features, its detection was accurate. But, in this
experiment we are going to use an AprilTag features to be detect by ORB and compare
it to the algorithm to detect AprilTags. While in the previously published work we used
the Kinect in a eye to hand environment, in these experiment the Intel D435 will be used,
since it is going to be used an eye in hand set up and the Kinect minimal distance on the
depth sensor will make this set up impracticable.

When it comes to detection, both algorithms can do the job as seen in Figures 4.45
and 4.46. We can see some mismatches using ORB but most of the time the detection is
accurate when comparing the boundbox generated to the reference image. When it comes
to execution time, ORB can detect one object in 0.013 seconds while AprilTag algorithm
takes 0.046 seconds to find all tags in the image. So, in a system where execution time is
crucial or lack processing power, the ORB will be better to detect a single object, but if

44 RESULTS

6 Object Estimated Position x JACO estimated position(meters)

p—

0.4 1 1 I 1

0 50 100 150 200 250

Figure 4.43: Estimated object position by the Kinect versus end effector position over
time - experiment 1.1.

X y Z
Initial Position | 0.211925 | -0.27501 | 0.4961

Pick Position 0.578906 | -0.278942 | 0.017514
End Position 0.466422 | -0.202357 | 0.186079

Table 4.11: Initial, Pick and End position for this experiment.

Figure 4.44: Experiment 1.2: ORB Detection.

we are going to detect more than one tag, the AprilTag may take the edge since it find
all tags in the scene in a single execution. To compare these algorithms, a experiment
where the arm moves to the object position, with a single movement, and grasp it will

4.2 PICK AND PLACE SYSTEM 45

be executed.

Figure 4.45: Experiment 1.2: Tag detection using ORB.

Figure 4.46: Experiment 1.2: AprilTag detection.

Analyzing the Figure 4.47, we see the arm position (z,y,z) converging to the tag
position (tz,ty,tz) using the AprilTag algorithm, where the position zero means the object
was lost. The object was lost when the gripper covered the tag while moving and after
the grasp. The same result can be seen on Figure 4.48, where the tag position tends to
zero when the arm comes close to its position.

Repeating the same experiment using ORB, we get the plots seen in Figures 4.49 and
4.50. In general, the results looks similar to the ones found on AprilTag but the plot has
some noise, that happens because the ORB sometimes does not found the same features
in two different frames, which may result in a position estimation slightly different. When
the gripper closes, it covers some features, resulting in a wrong estimation of the object
position, as seen on the plots after sample 100.

Since the tags are low on features, the features found on the environment are non-
deterministic and some mismatches will happen with features in the environment, it may
result in missing the grasp in some cases, thanks to wrong object position estimation.

46 RESULTS

Estimated object position vs manipulator position over time

0.8

Position(meters)

.06 -

08
0 20 40 60 80 100 120
Sample

Figure 4.47: Experiment 1.2: Estimated tag position vs arm position.

Object position related to the camera

0.06
——x

0.04 -

0.02 -

Position(meters)

-0.02 -

-0.04 : : : :
0 20 40 60 80 100 120

Sample

Figure 4.48: Experiment 1.2: Tag position relative to the camera.

On Figures 4.51, 4.52 and 4.53, we can see multiples frame after a detection, and all of
them return a slightly different object center, with exception of Figure 4.53, where the
geometry and object position does not match with reality and may cause problems when
estimating its position.

On Table 4.12, we see the initial position, where it is the same for both experiments,
and the position it grasps the object. We notice that the pick position from both algo-
rithms is really similar, with the position in difference being related to the way the detect
the object, mentioned before.

4.2 PICK AND PLACE SYSTEM

Estimated object position vs manipulator position over time

08

47

06 [

!

04

02

Position(meters)
o

Bopeon s

—— X
-y

— tx

—o—tiz| |

I — |
! '
08 . . L L I
0 20 40 60 80 100
Sample

Figure 4.49: Experiment 1.2: Estimated tag position using ORB vs arm position.

0.15

Object position related to the camera

0.1

0.05

2 005

-0.1 -

-0.15 -

-0.2

Position(meters)
i 2
2
g
4
<
E:

—— X
—f—y

. I
40 60
Sample

1 L
80 100

Figure 4.50: Experiment 1.2: Tag position relative to the camera using ORB.

X y Z
Initial Position -0.42 0.4 0.55
ORB Pick Position | -0.469 -0.0570832 | 0.5775
Tag Pick Position | -0.468961 | -0.0521626 | 0.583116

Table 4.12: Initial and Pick position from both experiments.

4.2.3 Pick and Place: Object inside a 3D printer

This experiment is set up as seen in Figure 4.54, where the printer has two tags that are
used to find it and move the arm closer, making easier to find the object inside it. After

48 RESULTS

Figure 4.53: Experiment 1.2: Tag detection using ORB 4.

detecting the AprilTags in the printer, the arm will search the object tag and move to
grasp it. After the grasping, it will remove the object from the printer and place it on
the table.

On Figure 4.55 can be seen the joint position over time, where the transition between
positions is smooth and non linear thanks to the Quintic Polynomial Trajectories. The

4.2 PICK AND PLACE SYSTEM 49

T A ™

Figure 4.54: Experiment 1.3: Set up.

joint velocities on Figure 4.56 shows the speed changes over time, where it accelerates
when far away from the objective and slow down when getting close to the destination.

Joint Position over time

== Joint1
=&~ Joint2
2k Joint3 | _|
=¥ Joint4
=&~ Joints

Jointé

Joint Position(radians)

. L L L
0 50 100 150 200 250
Sample

Figure 4.55: Experiment 1.3: Joint position over time.

On Figure 4.57 we can see the estimated object position by the homogeneous transform
vs the arm position, considering (tz,ty,tz) the estimated object position and (z,y,z) the
arm position. It is noted that the arm moves to the object position and after the grasp
the object is lost by the tag detection algorithm (tx,ty and tz equals to zero when the
object is lost). On Figure 4.58 we can confirm the arm approach to the object, since the
object position relative to the camera tends to zero until the object is released on the
table. On Table 4.13 we see the initial position, where it picks the object and the arm
position where it releases the object on the table.

On Figure 4.59 we can see the gripper position over time, where 0 is open and 255
is closed. Around seven seconds, the gripper position is closed, meaning the object is
grasped. Figure 4.60 it is shown the gripper status, where:

e 0: Waiting or moving.

50

0.8

Joint Velocity over time

06

Joint Velocity(radians/seconds)

-0.4

== Joint1
=&~ Joint2

Joint3
== Joint4 | |
~E~ Joints
&~ Joint6

Figure 4.56: Experiment 1.3: Joint velocity over time.

L
100

Sample

L L
150 200

250

Estimated object position vs manipulator position over time

0.6

Position(meters)

L
100

Sample

L I
150 200

250

RESULTS

Figure 4.57: Experiment 1.3: Estimated object position vs arm position.

X y Z
Initial Position | 0.24 0.08 0.47
Pick Position 0.424711 | 0.0905327 | 0.441354
Place Position | 0.363021 | 0.206499 | 0.37097

Table 4.13: Initial, Pick position and Place Position.

e 1: Object detected while opening the gripper.

4.2 PICK AND PLACE SYSTEM o1

Object position related to the camera

0.2

—— X
——y

015 -

0.1 [

Position(meters)

0.05 -

) W

-0.05

. L L .
0 50 100 150 200 250
Sample

Figure 4.58: Experiment 1.3: Object position relative to the camera.

e 2: Object detected while closing the gripper.

e 3: Movement completed without object detection.

Comparing Figures 4.59 and 4.60, we can see that when the gripper is closed, it grasps
the object, since the gripper status changes to two. The gripper status and position
changes by the end of the arm movement, where it is close to the table and release the
object on it.

Gripper position over time

300

250 -

200 -

Position
v
S

100 -

50 -

L L . L .
0 5 10 15 20 25 30
time(seconds)

Figure 4.59: Experiment 1.3: Gripper position over time.

52 RESULTS

Gripper status over time

25

05 [

. . . L
0 5 10 15 20 25 30
time(seconds)

Figure 4.60: Experiment 1.3: Gripper status over time.

4.2.4 Error Control and Repeatability

In this experiment, the robotic manipulator will move to the tag position over forty times
and grasp it, as seen in the video UR5 grasp (OLIVIERA, 2019). It will be discussed
error treatment and repeatability based on those executions. The arm will move using a
state machine, seen in Figure 4.61, where each state is a ROS action. This state machine
will ensure that when each action ends in success, it will continue with the grasping and
when an action fail, it will return to the initial position while alerting of the occurred
erTor.
Each action will work as follow:

e Inicio: Will move the arm to the initial position and initialize the gripper. Will fail
if can not reach the position, collides or can’t initialize the gripper.

e Detect: Will detect the tag. If the tag is not found, the action will fail.
e Pick: Will move to the object position. Will fail if the tag is lost or collides.
e Grasp: Closes the gripper. Fail if the gripper does not hold the object.

After executing the state machine forty three times, we had forty cases of success
and three errors, where the errors were: could not find the tag after thirty executions,
that happened since each time the gripper close it would drag the object a couple of
millimeters to the left, until it was covered by the gripper on the initial position, making
the tag not detectable; could not initialize the gripper due to ROS driver problem; could
not move due to collision with an object that was put in the environment. The Figure
4.62 shows the arm movement over the experiment, where we can see the arm moving
slightly on the Y azis and X azis due to the object being dragged when the gripper closes

4.2 PICK AND PLACE SYSTEM 53

InicioSkill

Detectskill

~

IniciosSkill2

Pickskill

Graspskill

succeeded

Figure 4.61: Experiment 1.4: State Machine.

eeeee ded

on the previous experiment. The object being dragged happened due to small errors in
the process of calibrating the extrinsic camera parameters, resulting the arm moving a
couple of millimeters to the left.

Arm position over time

Position(meters)

-06 -

08 . . .
0 50 100 150 200
Sample

Figure 4.62: Experiment 1.4: Arm position over the experiments.
When analyzing the position of the arm vs the estimated position of the object, we

having the error over the experiments seen in Figure 4.63, where the error is calculated as
arm position when grasping - object estimated position. The Table 4.14 we can see that

54 RESULTS

b'e y 7

Mean Error 0.00034340 | 0.00011117 | 0.00015905
Minimum Error | 0.00032100 | 0.000043800 | 0.00012500
Maximum Error | 0.00036100 | 0.00015890 | 0.00019800

Table 4.14: Mean, maximum and minimum position error.

b'e y 7

Mean Error 0.000022000 | -0.000050590 | -0.00012425
Minimum Error | -0.00016000 | -0.00018574 | -0.00028000
Maximum Error | 0.00015000 | 0.00017212 0.00014000

Table 4.15: Mean, maximum and minimum orientation error.

the X axis had the highest error while the Y azis had the smallest error. Considering that
the maximum error found was around 0.361 millimeters, we can see that the arm is precise
with the commands given to it, so the only way for it to not grasp the object depends on
others factors, like vision algorithms precision, obstacles or human intervention.

Arm position error relative to the object estimated position
0.0004

0.0003 -

0.0002 -

Erro(meters)

0.0001 |~

L I L
0 10 20 30 40
Sample

Figure 4.63: Experiment 1.4: Arm position error compared to the object estimated
position.

The arm orientation error can be seen on Figure 4.64, where the error is calculated
as arm final orientation - arm desired orientation. On Table 4.15 we see that like the
position, the orientation has a small error comparing to the desired orientation where the
maximum error is around 0.00017212 radians, showing the precision of the manipulator.

4.2 PICK AND PLACE SYSTEM 95

Arm orientation error relative to the desired orientation
0.0003

0.0002 -

0.0001 -

Erro(radian)

-00001 & Y

-0.0002 -

-0.0008 -

-0.0004
0

Figure 4.64: Experiment 1.4: Arm orientation error.

4.2.5 Mobile Manipulator

For this experiment, the robotic manipulator will be mounted on the mobile robot Husky
(CLEARPATH, 2019), manufactured by Clearpath, as seem in Figure 4.65. In this ex-
periment, the mobile robot will move to the printer position and , after getting there, the
robotic manipulator will pick the object inside it, as seen in the video (LAR, 2019).

Figure 4.65: UR5 mounted on Husky.
Source: Clearpath.

To perform the task, the arm will execute the following movements:

e Home Position: Moves the arm to a retracted position for navigation. This is made
to avoid the arm colliding with the environment while navigating.

o6 RESULTS

e Initialize Arm: Initialize the gripper and moves the arm to a predetermined position
pointing to the direction of the printer.

e Pick Object: Detect the printer position based on tags, pick the object from the
printer and remove it from the printer. The tags from the printer and from the
object are predetermined in the state machine, so each execution can have different
tags.

e Place Object: Place the object on a tag over the Husky.

On Figure 4.66, we can see the arm movement, where it starts with the Initialize Arm
and ends in Home Position. Figure 4.67 shows the arm (,y,z) versus the object estimated
position (tz,ty,tz), where the object is detected when starting the Pick Printer Skill and
after the grasp, the object is lost. Analyzing the graph we see the arm moving to the
object estimated position and after the grasp it is possible to see the object following the
arm position for a couple of frames until it is no longer detectable. On Table 4.16 we see
the positions where each movement happens and its events, like pick and place position,
considering that the Start Position of the movement is the same as the End Position of
the last movement.

Manipulator position over time

09

08

0.7

0.6

05

0.4

03

02
04

Figure 4.66: Experiment 2: 3D movement of the arm.

On Figures 4.68 and 4.69, we can seem the gripper position and gripper status re-
spectively, where the status is 2 when the object is grasped, around sample 390, and the
gripper opens at the end of the Place Object.

4.2 PICK AND PLACE SYSTEM

Estimated object position vs manipulator position over time

08

06 [

Position(meters)

-08

—x
-8y
e

| |
400 600
Sample

Initialize Arm

I I
800 1000

1200

Figure 4.67: Experiment 2: Estimated object position vs arm position.

X y v/
Start Position | 0.155315 0.103986 0.241986
End Position -0.0800062 0.0999956 0.399968

Pick Object
X y z
Pick Position | -0.417647 -0.00624312 | 0.32385
End Position -0.0799801 0.0999973 0.353852
Place Object
X y 7z
Place Position | -0.040636 -0.514095 0.481204
End Position -0.0843788 0.376869 0.630957
Home Position
X y Z
\ Home Position | 0.155311 0.103988 0.241997

Table 4.16: Start, Pick, Place and Home position

o7

RESULTS

Gripper position over time
300 T T T

Position
@
3
T
|

100 - B

50 - b

0 . . I . .
0 200 400 600 800 1000 1200
Sample

Figure 4.68: Experiment 2: Gripper position over time.

Gripper status over time
3 T T T

25 b

0 I L L L .
0 200 400 600 800 1000 1200

Sample

Figure 4.69: Experiment 2: Gripper status over time.

Chapter

CONCLUSION

This work presented practical results obtained by developing a pick and place system
based on robotic vision, where two algorithms were used to identify the desired object to
grasp: ORB and AprilTags. Based on the object position in 2D space, a RGB-D visual
sensor was used to translate the 2D point to 3D coordinates and, with those coordinates,
use Homogeneous Transformation and Inverse Kinematics to pick it.

To control the robotic manipulator, a study to find equations that describe its kine-
matics was necessary, since each robotic manipulator has its unique equations that de-
scribe its actual and desired joint position. With the kinematics done, it was needed an
equation to convert the object position related to the camera to the arm coordinates so
Homogeneous Transformation was used. To make the arm movement smooth, Quintic
Polynomial Trajectory was used.

With the algorithms to move and control the arm done, computer vision algorithms
were needed to find and localize the object to be grasped. The ORB is a feature algorithm
that combined with RANSAC can be used to detect objects based on a reference image.
While it has good performance, its weak point is the need for features, so featureless
objects or objects with low amount of features are troublesome to be detected. Another
way used to detect objects was based on tags, where AprilTag were used. While fast and
reliable, it suffers the problem of the need for a tag, which in some real life applications
may be unfeasible.

Since we are working in 3D space, after the pixel position localization of the object
is detected, we need to convert its position to (z,y,z) coordinates, since we are using a
RGB-D sensor, this can be done by converting pixel to point cloud coordinates. With
theses coordinates, using a PBVS becomes intuitive and simple to use in the application.

To compare the efficiency of the algorithms, an visual data study was performed.
Both algorithms were compared based on distance to camera and orientation relative to
the camera. When it comes to pick and place, diverse experiments were made, using a
eye on hand and eye to hand system. In these experiments, pick and place tasks were
made using ORB and AprilTag in different environments. To show that the task was

59

60 CONCLUSION

performed, the object position is compared to the arm position, in order to show that
the arm moved to the object position correctly and grasped it.

When comparing the visual data, it was shown that while the ORB can be used to
detect objects, it has problems when it has a low numbers of features, generating wrong
estimations, not making it reliable to grasping when the object is far away or partially
covered. Meanwhile the AprilTag showed trustworthy in the experiments, showing its
reliability.

On pick and place tasks, both algorithms can be used if within both limitations.
When using an object rich with features, ORB becomes reliable even when there is some
distance from the visual sensor. Grasping objects with an AprilTag attached to it made
the task simple, since we don’t need to know the object geometry to grasp it in the correct
position. In both cases, the pick and place tasks were executed without any problem or
setback.

The plots in the experiments shows the smooth joint trajectories thanks to the tra-
jectory planner used. When analyzing the arm position, object estimated position and
gripper sensor, we showed that the object was correctly grasped, since not only the arm
was on the object position with a small estimation error, but the gripper sensor also
confirmed the grasp.

To conclude, the proposed system is proved to complete pick and place tasks using two
computer vision algorithms to detect objects, even with some limitations. Future works
will aim to improve the object detection and grasp algorithms using Deep Learning and
the point cloud.

BIBLIOGRAPHY

ANDERSEN, R. S. Kinematics of a UR5. 2018. (http://rasmusan.blog.aau.dk/files/
urb_kinematics.pdf). Accessed: 06-06-2019.

BAY, T. T. H.; GOOL, L. V. Surf: Speeded up robust features. Furopean Conference
on Computer Vision, 2006.

BRADSKI, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

BRIOT S.; KHALIL, W. Dynamics of Parallel Robots: From Rigid Bodies to Flexible
FElements. 1. ed. : Springer International Publishing, 2015.

CALONDER V. LEPETIT, C. S. M.; FUA, P. Brief: Binary robust independent
elementary features. Furopean Conference on Computer Vision, 2010.

CHAUMETTE, F.; HUTCHINSON, S. Visual servo control. i. basic approaches.
Robotics Automation Magazine, IEEE, v. 13, p. 82 — 90, 01 2007.

CHAUMETTE, F.; HUTCHINSON, S. Visual servo control, part ii: Advanced
approaches. IEEFE Robot. Autom. Mag., v. 14, 01 2007.

CLEARPATH. HuskyUGV. 2019. (https://clearpathrobotics.com/
husky-unmanned-ground-vehicle-robot/). Accessed: 11-10-2019.

CONCEICAO, A. G.; OLIVEIRA, D. M.; CARVALHO, M. P. Orb algorithm applied to
detection, location and grasping objects. In: . 2018. p. 176-181.

COOK, D. et al. Mavhome: An agent-based smart home. In: . 2003. p. 521 — 524. ISBN
0-7695-1893-1.

CORKE, P. Robotics, Vision and Control: Fundamental Algorithms In MATLAB,
Second Edition. 2nd. ed. : Springer Publishing Company, Incorporated, 2017. ISBN
3319544128, 9783319544120.

CORMEN C. E. LEISERSON, R. L. R. T. H.; STEIN, C. Introduction to Algorithms.
3rd. ed. : MIT Press, 2009.

FIALA, M. Artag, a fiducial marker system using digital techniques. In: . 2005. v. 2, p.
590 — 596 vol. 2. ISBN 0-7695-2372-2.

FISCHLER, M. A.; BOLLES, R. C. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Communications
of the ACM, v. 24, p. 381-395, 06 1981.

61

62 BIBLIOGRAPHY

FORSYTH, D. A.; PONCE, J. Computer Vision: A Modern Approach. 2003.
GUENNEBAUD, G.; JACOB, B. et al. Figen v3. 2010. Http://eigen.tuxfamily.org.

HAN, D.-M.; LIM, J. Design and implementation of smart home energy management
systems based on zighee. Consumer Electronics, IEEE Transactions on, v. 56, p. 1417 —
1425, 09 2010.

HARRIS, C. G.; STEPHENS, M. A combined corner and edge detector. In: Alvey
Vision Conference. 1988.

INTEL. Intel Realsense Depth Camera D400. 2019. (https://software.intel.com/en-us/
realsense/d400). Accessed: 03-04-2019.

KIM, S.; OH, S.-Y. Hybrid position and image based visual servoing for mobile robots.
Journal of Intelligent and Fuzzy Systems, v. 18, p. 73-82, 2007.

KINOVA. KINOVA JACO Assistive robotic arm. 2019. (https://www.kinovarobotics.
com /en/products/assistive-technologies/kinova-jaco-assistive-robotic-arm). Accessed:
08-08-2019.

KLEIN, G.; MURRAY, D. W. Improving the agility of keyframe-based slam. In: . 2008.
v. 5303, p. 802-815.

KULKARNI, A. V.; JAGTAP, J.; HARPALE, V. K. Object recognition with orb and
its implementation on fpga. In: . 2013.

LAR. Pick and Place task wusing vision-based control. 2019.
Https://www.youtube.com/watch?v=cjeQNrCORn0.

LAROUCHE, B.; ZHU, Z. H. Position-based visual servoingin robotic capture of moving
target enhanced by kalman filter. International Journal of Robotics and Automation,
v. 30, p. 267-277, 06 2015.

LOWE, D. G. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 2004.

MERCHANT, B. The Biggest Sign Yet That Automa-

tion Is Taking Over at Amazon. 2019. (https://gizmodo.com/
the-biggest-sign-yet-that-automation-is-taking-over-at-1831460994). Accessed:
06-03-2019.

MOBINI, S. B. A.; FOUMANI, M. S. Accuracy of kinect’s skeleton tracking for upper
body rehabilitation applications. Disability and rehabilitation. Assistive technology,
2013.

MUR-ARTAL, R.; MONTIEL, J.; TARDOS, J. Orb-slam: a versatile and accurate
monocular slam system. IEEFE Transactions on Robotics, v. 31, p. 1147 — 1163, 10 2015.

BIBLIOGRAPHY 63

OLIVIERA, D. M. de. UR5 Grasp. 2019. Https://drive.google.com/file/d/1-
7qiFW3WiIGkV6VIUSLy7DYvpQEdJolS/view?usp=sharing.

PENG, C.-Y.; CHEN, R.-C. Voice recognition by google home and raspberry pi for
smart socket control. 2018 Tenth International Conference on Advanced Computational
Intelligence (ICACI), p. 324-329, 2018.

POINTCLOUD2 Message. 2019. (http://docs.ros.org/melodic/api/sensor_msgs/html/
msg/PointCloud2.html). Accessed: 02-05-2019.

QUIGLEY, M. et al. Ros: an open-source robot operating system. In: ICRA Workshop
on Open Source Software. 2009.

ROBOTIQ. Product Sheet: Adaptive Gripper. 2019. (https://blog.robotiq.com/hubfs/
Product-sheets/Product-sheet- Adaptive-Grippers-EN.pdf?_ga=2.235506949.580940770.
1553174797-282070942.1553174797). Accessed: 21-03-2019.

ROBOTS, U. Parameters for calculations of kinematics and dynam-

ics. 2019. (https://www.universal-robots.com/how-tos-and-faqgs/faq/ur-faq/
parameters-for-calculations-of-kinematics-and-dynamics-45257/). Accessed: 27-
03-2019.

ROBOTS, U. UR5: Technical details. 2019. (https://www.universal-robots.com/media/
1801303 /eng-199901 _ur5_tech_spec_web_ad.pdf). Accessed: 21-03-2019.

ROSIN, P. Measuring corner properties. Computer Vision and Image Understanding,
v. 73, p. 291-307, 02 1999.

ROSTEN, E.; DRUMMOND, T. Machine learning for highspeed corner detection.
Furopean Conference on Computer Vision, 2006.

RUBLEE, E. et al. Orb: an efficient alternative to sift or surf. In: . 2011. p. 2564-2571.

SPONG, S. H. M. W.; VIDYASAGAR, M. Robot Modeling and Control. 1%. ed. : John
Wiley Sons, 2005.

TAREEN, S. A. K.; SALEEM, Z. A comparative analysis of sift, surf, kaze, akaze, orb,
and brisk. In: . 2018.

TEKE, B. Real-time Target Tracking and Following with URS5 Collaborative Robot Arm.
Dissertagao (Mestrado) — Tampere University of Technology, Tampere, Finland, 2018.

WANG, J.; OLSON, E. AprilTag 2: Efficient and robust fiducial detection. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2016.

WANG, J. et al. Optimizing ground vehicle tracking using unmanned aerial vehicle and
embedded apriltag design. In: 2016 International Conference on Computational Science
and Computational Intelligence (CSCI). 2016. p. 739-744.

64 BIBLIOGRAPHY

WESTMAN, E.; KAESS, M. Underwater apriltag slam and calibration for high precision
robot localization. In: . 2018.

WILSON, W. J.; HULLS, C. C. W.; BELL, G. S. Relative end-effector control
using cartesian position based visual servoing. IEEE Transactions on Robotics and
Automation, v. 12, n. 5, p. 684-696, Oct 1996. ISSN 1042-296X.

XIE, S. et al. Fast detecting moving objects in moving background using orb feature
matching. In: 2013 Fourth International Conference on Intelligent Control and
Information Processing (ICICIP). 2013. p. 304-3009.

Appendix

APPENDIX

A.1 SOURCE CODE

In this appendix we are going to find the codes related to the URS arm, computer vision
algorithms, gripper control and the ROS actions used in some of the experiments.

65

66

URS5 Class

#include "urb_arm.hpp”

Matrix4f UR5::AH(int n, VectorXf th){

VectorXf d(6),a(6) ,alph(6);

d << 0.089159, 0, 0, 0.10915, 0.09465,
a << 0 ,—0.425 ,—0.39225 .0 ,0 ,0:
alph << M_PI/2, 0, 0, M_PI/2, —-M_PI/2,

Matrix4f t_a ,t_d ,rzt ,rxa;
tta << 1, 0, 0 ,0,

0,1 ,0 ,0,

0, 0, 1, 0,

0, 0 1
_a

I

rzt << cos(th(n—1)), —sin(th(n—-1)), 0

0, 0,
0, 0,

rxa << 1, 0 0,

, sin(alp
07 07 07 Y
auto A_i = t_d x rzt x t_a * rxa;
return A_i;
¥
Matrix4f

float oy, float oz){

auto s_1 = sin(o0z);
auto c¢_1 = cos(0z);
auto s_2 = sin (oy);
auto c¢_2 = cos(oy);
auto s_3 = sin(ox);
auto ¢_.3 = cos(ox);

0.0823;

0;

0,
sin(th(n—1)), cos(th(n-1)), 0, 0

) 0,

0, cos(alph(n—1)), —sin(alph(n-1)), 0,

0 h(n—1)), cos(alph(n-1)), 0,
1

UR5:: radianToRotation (float x,float y,float z,float

APPENDIX

0X ,

A.1 SOURCE CODE

}

Vector3f URS::rotationToEuler (Matrix4f matriz){

UR5:

Matrix4f final_mat ;
final_mat << c_1%c_2 , c¢_1*s_2%s.3 — s_1xc.3 , c_1lxs_2xc_3 +
s_1xs_3, x,

return f

s_1xc_2
s_3.,vy,
—s_2
’Z’
0,0,0,1;
inal_mat ;

Vector3f eul;
if (matriz(2,0) < 1){
if (matriz(2,0) > —1){

s_1xs_2x%xs_3

eul (2) = atan2(matriz(1,0)

+ c_1%xc_3

c_2%s_3

67

, S_1xs_2xc_.3 — c_1x%

, c_2xc_3

eul (1) = asin(—matriz(2,0));

eul (0) = atan2(matriz(2,1), matriz(2,2));

telse{

}
telse{

eul
eul
eul

}

return eul;

eul (2) = —atan2(—matriz(1,2), matriz(1,1))
eul (1) = M_PI/2;
eul (0) = 0;

(2) = atan2(—matriz(1,2), matriz(1,1));

(1)
(0)

0;

~M_PI/2;

:UR5(ros :: NodeHandle n_,int number_of_ movements) {

n=n_;

arm=n. advertise<control_msgs:: FollowJointTrajectoryActionGoal

>("/follow_joint_trajectory/goal”, 1);
msg. header .stamp =

msg. goal .
msg. goal .

)

msg. goal .
msg. goal .
msg. goal .
msg. goal .

trajectory
trajectory

trajectory
trajectory
trajectory
trajectory

.joint_names
.joint_names

.joint_names.
.joint_names.
.joint_names.
.joint_names.

ros :: Time::now () ;

matriz (0,0));

)

.push_back (” shoulder_pan_joint”);
.push_back (” shoulder_lift_joint”)

push_back
push_back
push_back
push_back

(
(
(
(

”

9

”

b

elbow_joint”);

wrist_1_joint”);
wrist_2_joint”);
wrist_3_joint”);

68 APPENDIX

msg. goal . trajectory . points.resize (number_of_movements) ;

for (int 1=0;i < number_of_movements;i++){
msg. goal . trajectory .points[i]. positions.resize (6);
msg. goal . trajectory . points[i]. velocities.resize (6);
msg. goal . trajectory .points[i].accelerations.resize (6);

}

state .name.resize (6);

state.velocity.resize (6);

state.position.resize (6);

state.effort.resize (6);

}

void UR5::set_state (const sensor_msgs:: JointState :: ConstPtr& now) {
for (int i=0; i < 6; i++){
state .name|i]= now—>name|1i |;
state.velocity [i]=now—>velocity [i];
state.position [i]=now—>position[i];

}

void URb5::set_status (const actionlib_msgs:: GoalStatusArrayConstPtr&

now) {
int size=now—>status_list.size();
status=now—>status_list [size — 1].status;

}

void UR5:: publish ()
arm. publish (msg
}

{
)
void UR5::move_arm(floatx pos, float duration,int movement_number){
for (int i=0; i < 6; i++){
msg. goal . trajectory . points [movement_number]. positions [i]=pos
[1];
¥

msg. goal . trajectory . points [movement_number |. time_from_start =
ros :: Duration (duration);

}

void URbH::move_arm_speed(float* speed,float duration ,int
movement_number) {
for (int i=0; i < 6; i++){
msg. goal . trajectory .points [movement_number|. velocities [i]=
speed [i];
¥

msg. goal . trajectory . points [movement number|. time_from _start =

A.1 SOURCE CODE 69

ros :: Duration (duration) ;

}
void UR5::move_arm_acc(floatx acc,float duration,int movement_number
)4
for (int i=0; i < 6; i++){
msg. goal . trajectory .points [movement number|. accelerations [1i
J=acc[i];
}
msg. goal . trajectory . points [movement_number |. time_from_start =
ros :: Duration (duration) ;
}

void UR5::move_arm_planner (float* pos,int movement number, float
startTime , float endTime) {
float qq[10],vq[10],aq[10];
float tO=startTime;
//float tf=endTime—startTime ;
//float t=tf/10;
//const float ta=tf/10;
float tf=endTime;
float t=(tf — t0)/10;
const float ta=(tf — t0)/10;
float q0=0;
float qf=0;
float v0=0;
float vf=0;
float ai=0;
float af=0;
float a0,al,a2,a3,ad,ab;

Matrix<float , 6, 1> b[6];

Matrix<float , 6, 1> a[6];
Matrix<float , 6, 6> m;

for (int 1=0;i < 6; i++){
q0=get_state ().position|[i];

qf=pos [1];

b[i] << q0,v0,ai,qf,vf, af;

m<< 1, t0, tOxt0, tOxt0xt0,t0xt0*xt0xt0,t0xt0xt0*t0 ,
0, 1, 2%t0, 3%t0xt0,4xt0xt0xt0 ,5xt0xt0xt0xt0
0,0,2,6%xt0,12xt0xt0,20%xt0xt0*t0 ,
1, tf, tfxtf, tfxtfsxtf, tfxtfstfxtf, tfxtfxtfxtixtl,
0, 1, 2«tf, 3xtfxtf dxtfxtfxtf Sxtfxtfxtfxtf,
0,0,2,6xtf ,12xtfxtf 20 tfxtfxtf;

70

a[i]=m.inverse ()*b[i];

}

APPENDIX

for (int i=movement_number; i < movement_number+10; i++){

for (int j=0;j < 6; j++){

a0=a[j].coeff(0,0);
al=a[j].coeff(1,0);
a2=a[j].coeff(2,0);
a3=a[j].coeff(3,0);
ad=a[j].coeff(4,0);
ab=a[j].coeff(5,0);

qqlj]= al+alsxt+a2xt*xt+adstxtxttadsctxtxtxt+abrtxtxtxt

1 ;

vq[j]= al42+a2xt+3xadsxtxt+4xadxtxtxt+oxabktxtxtxt

aq[j]= 2xa2+6xa3xt+12xad*xt*xt+20xabxtxtxt;

}

move_arm (qq, startTime+t , 1) ;
move_arm _speed (vq,startTime+t , 1) ;
move_arm_acc (aq,startTime+t , i) ;
t=t+ta

bool UR5H::ik_move(float x,float y,float z,float thetax,float thetay,

//float dl = 0.1273;
float a2 = —0.425;
float a3 = —0.39225;
//float a7 = 0.075;
float d4 = 0.10915;
//float d5 = 0.1157;
float d6 = 0.0823;

float pos|[6];
Matrix4f desired_pos;

float thetaz ,int movement number, float startTime ,float endTime){

desired _pos= radianToRotation (x,y,z,thetax ,thetay ,thetaz);

VectorXf th(6);

VectorXf d(6) ,a(6),alph(6);

d << 0.089159, 0, 0, 0.10915, 0.09465, 0.0823;
a << 0 ,0,-0.425 ,-0.39225,0 ,0;

alph << 0, MPI/2, 0,0, M_PI/2, — M_PI/2;

MatrixXf pl(4,1),p2(4,1),p3(4,1);

A.1 SOURCE CODE

pl << 0,0, —d6, 1;
p2 << 0,0,0,1;
p3 << 0, —d4, 0, 1;

MatrixXf P_05(4,1);

P_05=

desired_pos * pl — p2;

[/*x*xx%x thetal sskxx

auto psi = atan2(P_05(1,0), P_05(0,0));
auto phi = acos(d4 /sqrt(P_-05(1,0)*P_05(1,0) + P_05(0,0)«P_05
(0,0)));

th(0) = M_PI/2 4+ psi + phi;

[/ *xxkkkk theta Dok

auto
auto

T_ 10 = AH(1,th).inverse();
T_16 = T_10 % desired_pos;

th (4)=—acos ((T-16(2,3)—d4)/d6);

J/*%x% theta 6 ssksxx

auto

T_17=T_16.1inverse () ;

th(5)=atan2((—T_17(1,2)/sin(th(4))),(T_-17(0,2)/sin(th(4))));

[/ theta 3 sokskokkx
//T-10 = linalg.inv (AH(1,th,c));

auto
auto
auto
auto
auto

th(2)

T_65 = AH(6,th);

T_54 = AH(5,th);

T.14 = (T_10 % desired_pos) * (T_54 % T_65).inverse();
P13 = T 14 % p3 — p2:

P_14=P_13 .norm() ;

= acos ((P_14xP_14 — a2xa2 — a3xa3)/(2 * a2 % a3));

//*xxx theta 2 e 4 sxxxxxx

auto
auto
auto
auto
auto

F_10 = AH(1,th).inverse ()
F_65 = AH(6,th).inverse (
(
o

F_54 = AH(5,th).inverse
F_14 = (F_10 % desired_p
F_13 = F_14 % p3 — p2;

)
)
s) * F_.65 x F_54;

th(1) = —atan2(F_13(1), —F_13(0)) + asin(a3* sin(th(2))/F_13.

norm ()) ;

71

72

geometry_msgs ::

}

geometry_msgs ::

auto F_32 = AH(3,th).inverse () ;
auto F_21 = AH(2,th).inverse () ;
auto F 34 = F_ 32 x F_ 21 % F_14;
th(3) = atan2(F_34(1,0), F,34(0,0));

(
if (th(3) > 0)
th(3)= th(3) — 2xM_PI;

for (int 1=0;i<6;i++){
pos [i]=th(i);

}
//pos[b]=pos[5]+1.5708;

move_arm_planner (pos , movement_number , startTime ,endTime) ;

return true;

PoseStamped URb5::
VectorXf th(6);

get_end _position (){

for (int i=0; i < 6; i++){
th(i)=get_state().position[i];

}

auto A_1=AH(1,th);

auto A_2=AH(2,th);

auto A_3=AH(3,th);

auto A_4=AH(4,th);

auto A_5=AH(5,th);

auto A_6=AH(6,th);

Matrix4f T_06=A_1xA_2xA_3xA_4xA_5xA_6;

geometry_msgs :: PoseStamped p;

auto angles=rotationToEuler (T.06);
.pose.position.x= T_06(0,3) ;
.pose.position.y= T_06(1,3);
.pose.position.z= T_06(2,3);
(
(
(

9

)

0);
1) :
2)

.pose.orientation .X—angles
.pose.orientation
.pose.orientation

.y=angles
.z=angles

T T oo oo

return p;

Point UR5:: homotransform (geometry msgs ::

Point

APPENDIX

point) {

A.1 SOURCE CODE

auto pos=get_end_position ();

float
float
float
float
float
float

thetax=pos.
thetay=pos.
thetaz=pos.
X=pOS . pose.
y=pos . pose.
Z=pOoSs . pose.

Matrix4f trans;
trans=radianToRotation (x,y,z,thetax ,thetay ,thetaz);

Vectordf campos;

campos << point.x

pose.orientation .x;
pose.orientation .y;
pose.orientation.z;
position .x;
position.y;
position.z;

,point.y , point.z, 1;

Vectordf final_pos;
final_pos= trans * campos;
geometry_msgs :: Point solution;

solution .x=
solution .y=

final_pos (0);
final_pos(1);

solution.z= final_pos (2);
return solution;

}

geometry_msgs :: PoseStamped UR5:: homotransform (geometry_msgs:: Point

point , float ax, float ay,float az){
auto pos=get_end_position ();

float
float
float
float
float
float

thetax=pos.
.pose.orientation.y;

thetay=pos

thetaz=pos.
X=pOSs . pose.
y=pos . pose.
Z=pos . pose.

Matrix4f trans;
trans=radianToRotation (x,y,z,thetax ,thetay ,thetaz);

Matrix4f campos;

campos=radianToRotation (point .x, point .y, point.z,ax,ay,az);

pose.orientation .x;

pose.orientation.z;
position .x;
position .y;
position.z;

Matrix4f final_pos;
final _pos= trans x campos;

auto angles=rotationToEuler (final_pos);

73

74

geometry_msgs

solution . pose.
solution . pose.
solution . pose.

solution . pose.
solution . pose.
solution . pose.

APPENDIX

:: PoseStamped solution ;

position.x= final_pos(0,3);
position.y= final_pos(1,3);
position.z= final_pos(2,3);
orientation .x=angles (0);

orientation .y=angles (1) ;
orientation.z=angles (2);

return solution;

A.1 SOURCE CODE

Kinect Class

#include ”Kinect.hpp”

std::string Kinect:: type2str() {

int type= img.type();
std::string r;

uchar depth =
uchar chans =

switch
case
case
case
case
case
case
case

(depth
CV__8U:

CV__8S:

CV_16U:
CV_16S:
CV_.32S:
CV_32F:
CV_64F:

default :

}

T +: 77C77;
r += (chans+’0");

return

r;

type & CVMAT DEPTH MASK ;
1 + (type >> CV_CN_SHIFT) ;

) A

r = 78U”; break;

r = ”8S”; break;

r = 716U”; break;
r = 716S”; break;
r = 732S”7; break;
r = 732F”; break;
r = 764F”; break;
r = ”"User”; break;

void Kinect::set_image (const sensor_msgs:: ImageConstPtr& msg){

}

cv_bridg
try

{

}

e :: CvlmageConstPtr cv_ptr;

cv_ptr = cv_bridge ::toCvCopy (msg, sensor_msgs ::
image_encodings :: TYPE8UC3) ;
img = cv_ptr—>image;

catch (cv_bridge :: Exception& e)

{

ROSERROR(” cv_bridge exception: %s”, e.what());

return;

75

void Kinect::set_image_depth(const sensor_msgs:: ImageConstPtr& msg){
cv_bridge :: CvlmagePtr cv_ptr;

76 APPENDIX

try

cv_ptr = cv_bridge ::toCvCopy (msg, sensor_msgs ::
image_encodings :: TYPE_16UC1);//now cv_ptr is the
matrix, do not forget "TYPE.” before ”16UC1”
img_depth=cv_ptr—>image;
}
catch (cv_bridge :: Exception& e)
{
ROSERROR(” cv_bridge exception: %s”, e.what());

return;

void Kinect::set_point(const sensor_msgs:: PointCloud2Ptr& msg){
cloud . header=msg—>header;
cloud . height=msg—>height;
cloud . width=msg—>width ;
cloud.is_bigendian=msg—>is_bigendian ;
cloud . point_step=msg—>point_step;
cloud . row_step=msg—>row_step;
cloud.is_dense=msg—>is_dense;
int sizef=msg—>fields.size ();
int sized=msg—>data.size ();

cloud. fields .resize (sizef);
cloud.data.resize (sized);

for (int 1i=0; i < sizef; i++){
cloud. fields [i].name = msg—>fields [i].name;
cloud. fields [i]. offset= msg—>fields [i]. offset;
cloud. fields [i].datatype= msg—>fields [i]. datatype;
cloud. fields [i].count= msg—>fields[i].count;

}

for (int 1=0; i < sized; i++)
cloud.data[i] = msg—>data[i];
cloud_filled=true;

void Kinect :: show_image () {

if (img.data) // Check for
invalid input

A.1 SOURCE CODE

{
imshow (” Kinect RGB Image” ,img);
waitKey (5) ;
}
}
void Kinect ::show_image_depth(){
if (img.data) // Check for
invalid input
{

imshow (” Kinect Depth Image” ,img_depth);
waitKey (5) ;

77

78

Gripper Class

#include ”rfinger . hpp”

RFinger :: RFinger(ros :: NodeHandle n_){

n=n._;

f=n.advertise<robotiq_2f_gripper_control ::

APPENDIX

Robotiq2F Gripper_robot_output >(” /Robotiq2FGripperRobotOutput”,

1)

}

void RFinger::set_state(const robotiq_-2f_gripper_control::
Robotiq2FGripper_robot_input :: ConstPtr& now) {

is_subbed=true;

status .gACT=now—>gACT;
status .gGTO=now—gGTO;
status .gSTA=now—>gSTA;
status .gOBJ=now—>gOBJ;
status .gFLT=now—>gFLT;
status .gPR=now—>gPR;
status .gPO=now—>gPO;
status .gCU=now—>gCU;

}

void RFinger::init (){
if (status.gACT = 0){

data .rACT=1;
data .rGTO=1;
data .rATR=0;
data .rPR=0;
data .rSP=255;
data .rFR=150;
speed =255;
force=150;
f.publish (data);

ROSINFO (” Gripper initialized”);
telse if(status.gACT = 1){
ROSWARN(” Gripper already on”);

}
}
void RFinger::reset (){
if (status.gACT = 1){
data .rACT=0;
data .rGTO=0;

data .rATR=0;

A.1 SOURCE CODE

}

data .rPR=0;

data.rSP=0;

data.rFR=0;

f.publish (data);

ROSINFO(” Gripper Restarted”);

}else{
ROSWARN(” Gripper already off”);
}

void RFinger:: close (){
)

}

if (status.gACT = 1){
data .rACT=1;
data .rGTO=1;
data .rATR=0;
data .rPR=255;
data.rSP=speed;
data .rFR=force
f.publish (data);
ROSINFO (” Gripper Closed”);

}else{
ROSERROR(” Init the Gripper”);

}

void RFinger::open(){

}

if (status.gACT = 1){

data .rACT=1;

data .rGTO=1;

data .rATR=0;

data .rPR=0;

data.rSP=speed;

data .rFR=force

f.publish (data);

ROSINFO(” Gripper Open”);
telse{

ROSERROR(” Init the Gripper”);
¥

void RFinger::set_speed(int speedo){

}

speed=speedo;

void RFinger::set_force(int forceo){

}

force=forceo;

79

80 APPENDIX

void RFinger::set_position (int position){
if (status.gACT = 1){
data .rACT=1;
data .rGTO=1;
data .rATR=0;
data.rPR=position
data.rSP=speed;
data .rFR=force
f.publish (data);
ROSINFO(” Gripper In Position”);

telse{
ROSERROR(” Init the Gripper”);
}

}

robotiq_2f_gripper_control :: Robotiq2FGripper_robot_input RFinger::
get_status (){
return status;

}

int RFinger:: get_position (){
return status.gPR;

}

int RFinger:: get_speed (){
return speed;

}

int RFinger:: get_force (){
return force;

}

int RFinger:: has_obj(){
return status.gOBJ;

}

A.1 SOURCE CODE

Object Detection Class

#include ”ObjDetection.hpp”

float
float
float
float

ObjDetec ::
ObjDetec ::
ObjDetec ::
ObjDetec ::

ox=0;
oy =0;
0z=0;
angle=0;

geometry_msgs :: Point ObjDetec:: pointsToPose (
geometry_msgs :: Point pl,geometry _msgs:: Point p2){
geometry_msgs :: Point ponto;
float xp=pl
float yp=pl

float xc=p2
float yc=p2

'

A
float zp=pl.

Z,

LX

A
float zc=p2.

7 -

//const float pid= 180/M_PI;

ponto.x = atan(sqrt (pow((xp—xc) ,2)+pow ((yp—yc),2))/()
ponto.y = atan(sqrt(pow((zp—zc) ,2)+pow ((yp—yc),2))/(xp—=xc));
ponto.z = atan(sqrt (pow ((xp—xc) ,2)+pow ((zp—zc) ,2))/(y

/ *

cout <<
cout <<
cout <<

*/

Zp—zc));

p—yc));

”Angulo x:”7 << ponto.xxpid << endl;
”Angulo y:” << ponto.yx*xpid << endl;
”Angulo z:” << ponto.zxpid << endl;

return ponto;

geometry_msgs :: Point ObjDetec:: pixelTo3DPoint (
const sensor_msgs :: PointCloud2 pCloud, const int u, const int v)

{

geometry_msgs :: Point p;

int
int
int
int

float X =

0.0
float Y = 0.0;
0.0

float Z =

arrayPosition = vxpCloud.row_step + uxpCloud. point_step;

arrayPosX = arrayPosition + pCloud. fields [0]. offset;
arrayPosY = arrayPosition + pCloud. fields [1]. offset;
arrayPosZ = arrayPosition + pCloud. fields [2]. offset;

I

?

memcpy(&X, &pCloud.data[arrayPosX], sizeof(float));
memcpy (&Y, &pCloud.data[arrayPosY], sizeof(float));

81

82

}

APPENDIX

memcpy(&Z, &pCloud.data[arrayPosZ], sizeof(float));

p.x = X;
p.y =Y;
p.z = 7;
return p;

Point ObjDetec:: objDetec (Kinect cam,string image_path){

if (cam.get_image().data){
Mat img=cam.get_image () ;

//Aplica Orb na imagem

std :: vector<cv:: KeyPoint> keypoints_object , keypoints_scene;

cv::Mat descriptors_object , descriptors_scene;

double ti=(double)getTickCount();

Ptr<Feature2D> detector= ORB:: create (2000, 1.2f, 8,6 10 , 0, 2,
ORB:: HARRIS.SCORE, 10);

Ptr<Feature2D> extractor= ORB:: create () ;

Mat out,img_scene;

cvtColor (img, img_scene , cv::COLORBGR2GRAY) ;

double t=(double)getTickCount();

detector —>detect (img_scene , keypoints_scene);

extractor —>compute (img_scene , keypoints_scene, descriptors_scene
)

t = ((double)getTickCount () — t)/getTickFrequency () ;

cout << "Tempo de Processamento: 7 << t << endl;

drawKeypoints (img_scene , keypoints_scene, out, Scalar::all(255))

imshow (” Cena” ,out) ;

Mat img_object=imread (image_path , CV.LOADIMAGE.COLOR) ;

cvtColor (img_object , img_object , cv::COLORBGR2GRAY) ;

detector —>detect (img_object , keypoints_object);

extractor —>compute (img_object , keypoints_object ,
descriptors_object);

Mat out2;

drawKeypoints(img_object , keypoints_object , out2, Scalar:: all
(255));

imshow (” Objeto” ,out2) ;

//Compara as features
Ptr<DescriptorMatcher> matcher = DescriptorMatcher :: create (”

A.1 SOURCE CODE 83

BruteForce—Hamming”) ;
vector<cv ::DMatch> matches;
Mat img_matches;
if (! descriptors_object.empty() && !descriptors_scene.empty()) {
double tl=(double)getTickCount () ;
matcher—>match (descriptors_object , descriptors_scene ,

matches) ;
t1 = ((double)getTickCount () — t1)/getTickFrequency ();
cout << "Tempo de Processamento de Matches: 7 << t1 << endl;

double max_dist = 0; double min_dist = 100;

//—— Quick calculation of max and min idstance between
keypoints

for(int i = 0; i < descriptors_object.rows; i++)

{ double dist = matches[i]. distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;

}

//—— Draw only good matches (i.e. whose distance is less
than 3%xmin_dist)
std :: vector< cv::DMatch >good_matches;

for(int 1 = 0; i < descriptors_object.rows; i++)

{ if(matches[i]. distance < (max_dist/1.6))
{ good_matches.push_back(matches[i]); }
}

cv::drawMatches(img_object , keypoints_object , img_scene,
keypoints_scene , \
good_matches, img matches, Scalar::all(—1), Scalar::

all(—1),
std :: vector<char>(), cv::DrawMatchesFlags::
NOT_DRAW SINGLE _POINTS) ;

//—— localize the object
std :: vector<Point2f> obj;
std :: vector<Point2f> scene;

for(size_t i = 0; i < good_matches.size(); i++) {
//—— get the keypoints from the good matches
obj.push_back(keypoints_object|[good_-matches]|[i].
queryldx].pt);
scene . push_back(keypoints_scene| good_matches[i].
trainldx |.pt);

84

}
P (

APPENDIX

lobj.empty () && !scene.empty() && good_matches.size () >=

1

double t2=(double)getTickCount () ;

Mat H = findHomography(obj, scene, RANSAC);

t2 = ((double)getTickCount () — t2)/getTickFrequency () ;

cout << "Tempo de Processamento do RANSAC: 7 << t2 <<
endl;

//—— get the corners from the object to be detected

std :: vector<Point2f> obj_corners(4);

obj_corners [0] = Point(0,0);

obj_corners[1] = Point(img_object.cols ,0);

obj_corners [2] = Point(img_object.cols ,img_object.rows);
obj_corners [3] = Point (0,img_object.rows);

std :: vector<cv::Point2f> scene_corners(4);

cv::perspectiveTransform (obj_corners, scene_corners, H)

)

//—— Draw lines between the corners (the mapped object
in the scene — image_2)

Point pl= scene_corners [0] + Point2f(img_object.cols, 0)

)

Point p2= scene_corners[1] + Point2f(img_object.cols, 0)

Y

Point p3= scene_corners[2] + Point2f(img_object.cols, 0)

Point p4= scene_corners [3] + Point2f(img_object.cols, 0)

(img_matches, pl, p2, cv::Scalar(0,0,255)
(img-matches, p2, p3, cv::Scalar(0,255,0),
line (img _matches, p3, p4, cv::Scalar(0,255,0),
(img_matches, p4, pl, cv::Scalar(0,255,0)

I

[N S

)

ObjDetec :: angle=atan2(p2.y — pl.y, p2.x — pl.x);

cout << "Rotacao: 7 << ObjDetec::angle << endl;
/%

Point t,t2;

t.x= pl.x — 5;

t.y= pl.y;

t2.x= p2.x + 5;
t2.y= p2.y;

A.1 SOURCE CODE

auto c1=0bjDetec ::

85

pixelTo3DPoint (cam. get_cloud () ,pl.x,pl

Y);

auto c¢2=0DbjDetec :: pixelTo3DPoint (cam. get_cloud () ,p2.x,p2
Y)

cout << "Cl: 7 << ¢l << endl;

cout << "C2: 7 << ¢2 << endl;

pointsToPose(c2,cl);

*/

auto x=(pl.x+p2.x+p3.
auto y=(pl.y+p2.y+p3.

Point center (x,y);

circle (img-matches,

x+pd.x) /4 ;
y+pd.y) /4;

center , 4, cv::Scalar (255,255 ,255) |

71, 85 0)7
imshow (" match result”, img _matches);
x= x — img_object.cols;

center .x=x;

ti ((double)getTickCount () — ti)/getTickFrequency () ;
cout << "Tempo de Processamento Total: 7 << ti << endl;
return center;

}

Point center_void (0,0);
return center_void;

TagTestOptions ObjDetec:: parse_options(int argc, charxx argv) {
TagTestOptions opts;
const charx options_str
int c;
while ((c getopt (arge, argv,

switch (c) {
// Reminder: add new options to
print_usage () !

"hdtRvxoDS:s:a:m:V:N: brnf:e:”;

options_str)) != —1) {

i

options_str ’ above and

case ’'d’: opts.show_debug_info = true; break;
case 't’: opts.show_timing = true; break;
case 'R’: opts.show_results = true; break;
case 'v’: opts.be_verbose = true; break;

86

}

APPENDIX

case 'x’: opts.no_images = true; break;

case '0’: opts.generate_output_files = true; break;

case 'D’: opts.params.segDecimate = true; break;

case ’S’: opts.params.sigma = atof(optarg); break;

case ’'s’: opts.params.segSigma = atof(optarg); break;

case ’a’: opts.params.thetaThresh = atof(optarg); break;

case 'm’: opts.params.magThresh = atof(optarg); break;

case 'V’: opts.params.adaptiveThresholdValue = atof(optarg);
break ;

case 'N’: opts.params.adaptiveThresholdRadius = atoi(optarg);
break ;

case 'b’: opts.params.refineBad = true; break;

case ’'r’: opts.params.refineQuads = true; break;

case 'n’: opts.params.newQuadAlgorithm = true; break;

case 'f’: opts.family_str = optarg; break;

case ’e’: opts.error_fraction = atof(optarg); break;

default :

fprintf(stderr, ”\n”);

exit (1)

}
}

opts.params.adaptiveThresholdRadius += (opts.params.
adaptiveThresholdRadius+1) % 2;
if (opts.be_verbose) {
opts.show_debug_info =
true;

}

return opts;

opts.show_timing =

opts.show_results =

Point ObjDetec:: aprilDetect (Kinect cam, unsigned int id, bool show){

const std::

Point zero(0,0);

TagTestOptions opts

string win = "Tag test”;

= parse_options (0, 0);

TagFamily family (opts.family_str);

if (opts.error_fraction >= 0 && opts.error_fraction < 1) {
family .setErrorRecoveryFraction (opts.error_fraction);

}

TagDetector detector (family, opts.params);
detector .debug = opts.show_debug_info;

detector .debugWindowName

99

opts.generate_output_files ? win ;

if (opts.params.segDecimate && opts.be_verbose) {
std ::cout << ”Will decimate for segmentation!\n”;

A.1 SOURCE CODE 87

}

TagDetectionArray detections;
Mat src = cam.get_image () ;

if (src.empty()) { return zero; }

while (std::max(src.rows, src.cols) > 800) {
cv::Mat tmp;
cv::resize(src, tmp, cv::Size(0,0), 0.5, 0.5);
src = tmp;

}

cv::Point2d opticalCenter (0.5%xsrc.rows, 0.5%src.cols);

clock_t start = clock();

detector.process(src, opticalCenter, detections);
clock_t end = clock ();

if (opts.show_results) {
if (opts.show_debug_info) std::cout << "\n”;
std ::cout << "Got 7 << detections.size() << 7 detections in ”
<< double(end—start) /CLOCKS PER.SEC << ” seconds.\n”;
for (size_-t 1=0; i<detections.size(); ++i) {
const TagDetection& d = detections|[i];

I

std ::cout << 7 — Detection: id =7 << d.id << 7, 7
<< "code =7 << d.code << 7, 7
<< 7 position =7 << d.exy << 7, 7
<< 7rotation =7 << d.rotation << ”\n”;

cv::Point center(d.cxy.x,d.cxy.y);
cv::circle(src, center, 4, cv::Scalar(0,0,255), —1, 8, 0);
}
}
if (!opts.no_images) {
cv::Mat img = family.superimposeDetections(src, detections);
labelAndWaitForKey (win, ”"Detected”, img, ScaleNone, true);

}

for (size_t i=0; i<detections.size(); ++i) {
const TagDetection& d = detections|i];

std::cout << 7 — Detection: id =7 << d.id << 7, 7
<< 7code =7 << d.code << 7, 7
<< 7"position =7 << d.exy << 7, 7
<< 7rotation =7 << d.rotation << "\n”;

if (d.id = id){
cv::Point center(d.cxy.x,d.cxy.y);
cv::circle(src, d.p[0], 4, cv::Scalar(255,0,0), —1, 8, 0);

88 APPENDIX

cv::circle(src, d.p[l], 4, cv::Scalar(0,255,0), —1, 8, 0
cv::circle(src, d.p[2], 4, cv::Scalar(0,0,255), —1, 8, 0
cv::circle(src, d.p[3], 4, cv::Scalar(255,255,255), —1, 8,

);
)

)

0);
cv::circle(src, center, 4, cv::Scalar(0,0,0), -1, 8, 0);
ObjDetec :: angle=atan2(d.p[1].y — d.p[0].y, d.p[1l].x — d.p
[0].x);

if (cam.cloud_filled){
auto cl=0ObjDetec:: pixelTo3DPoint (cam. get_cloud () ,d.p[0].

x,d.p[0].y);

auto c2=0DbjDetec:: pixelTo3DPoint (cam. get_cloud () ,d.p[1].
x,d.p[1].y);

auto c3=0DbjDetec:: pixelTo3DPoint (cam. get_cloud () ,d.p[2].
x,d.p[2].¥);

//cout << "Cl: 7 << ¢l << endl;

//cout << "C2: 7 << ¢2 << endl;

//cout << "C3: 7 << ¢3 << endl;

auto posel=pointsToPose(c2,cl);

auto pose2=pointsToPose(c2,c3);

if (posel.x > 0 && posel.x <= 1.57){
ObjDetec::0x= 1.57 — posel .x;

telse if (posel.x < 0 && posel.x >= —1.57){
ObjDetec::0x= —1.57 — posel .x;

}

ObjDetec :: oy=0ObjDetec :: angle;
ObjDetec :: oz=pose2.z;

cout << ”"Rotacao: 7 << ObjDetec::anglex180/M_PI << endl;
putText (src, to_string(d.id) , cvPoint(center.x,center.y),
FONT HERSHEY DUPLEX, 0.8, cvScalar(0,0,250), 1, CV.AA);

return center;

}

if (opts.show_timing) detector.reportTimers () ;
return zero;

}

A.1 SOURCE CODE

89

void ObjDetec:: multAprilDetect (Kinect cam, unsigned int id[], Point

output [], int size, bool show){

const std::string win = "Tag test”;
Point zero (0,0);

for (int 1=0;i < size;i++){
output [i]=zero;
}

TagTestOptions opts = parse_options (0, 0);
TagFamily family (opts.family_str);

if (opts.error_fraction >= 0 && opts.error_fraction < 1) {
family .setErrorRecoveryFraction (opts.error_fraction);
}

TagDetector detector (family , opts.params);
detector .debug = opts.show_debug_info;
detector .debugWindowName = opts.generate_output_files ? 7”7 : win
if (opts.params.segDecimate && opts.be_verbose) {
std ::cout << ”"Will decimate for segmentation!\n”;
}

TagDetectionArray detections;
Mat src = cam.get_image () ;

if (!src.empty()) {

while (std::max(src.rows, src.cols) > 800) {
cv::Mat tmp;
cv::resize(src, tmp, cv::Size(0,0), 0.5, 0.5);
src = tmp;

}

cv::Point2d opticalCenter (0.5%xsrc.rows, 0.5%xsrc.cols);

clock_t start = clock();
detector.process(src, opticalCenter, detections);
clock_t end = clock () ;

if (opts.show_results) {
if (opts.show_debug_info) std::cout << "\n”;
std ::cout << "Got 7 << detections.size() << 7 detections

1n

<< double (end—start) /CLOCKS PERSEC << ” seconds

90

APPENDIX

An”;
for (size_t 1=0; i<detections.size(); ++i) {
const TagDetection& d = detections[i];

std::cout << ” — Detection: id =7 << d.id << 7, 7
<< 7code =7 << d.code << 7, 7
<< 7 position =7 << d.cxy << 7, 7
<< "rotation =7 << d.rotation << "\n”;

cv::Point center(d.cxy.x,d.cxy.y);
cv::circle(src, center, 4, cv::Scalar(0,0,255), —1, 8,
0);
t
}
if (!opts.no_images) {
cv::Mat img = family.superimposeDetections(src, detections
)

labelAndWaitForKey (win, "Detected”, img, ScaleNone, true);

}

for (size_-t 1=0; i<detections.size(); ++i) {
const TagDetection& d = detections[i];

std::cout << 7 — Detection: id =7 << d.id << 7, 7
<< 7code = 7 << d.code << 7, 7
<< 7position =7 << d.exy << 7, 7
<< 7rotation =7 << d.rotation << "\n”;

for (int j=0;j < size;j++){
if (d.id = id[j]){
cv::Point center(d.cxy.x,d.cxy.y);
cv::circle(src, d.p[0], 4, cv::Scalar(255,0,0),

-1, 8, 0);

cv::circle(src, d.p[l], 4, cv::Scalar(255,0,0),
-1, 8, 0);

cv::circle(src, d.p[2], 4, cv::Scalar(255,0,0),
-1, 8, 0);

cv::circle(src, d.p[3], 4, cv::Scalar(255,0,0),
-1, 8, 0);

cv::circle(src, center, 4, cv::Scalar(0,0,255),
-1, 8, 0);

putText (src, to_string(d.id) , cvPoint(center.x,
center .y) ,FONT HERSHEY DUPLEX, 0.8, cvScalar
(0,0,250), 1, CV.AA);

output[j]=center;

//return center;

A.1 SOURCE CODE

91

92 APPENDIX

ROS Action Inicio

#include <ros/ros.h>

#include <actionlib/server/simple_action_server.h>
#include <inicio_skill_server/inicio_skill_server .h>
#include <fstream>

#include "urb_arm.hpp”

#include "rfinger .hpp”

void saveData(sensor_msgs:: JointState state ,geometry_msgs::
PoseStamped p, int gripper_pos,int obj,double time){

ofstream csv;
csv.open(” /home/fastenufba/logs UR/dados.csv”, std::ios_base

::app) ;
csv << time << 77 << 0 << 7)” << state.position [0] << 7,
<< state.position[l] << 7,7 << state.position[2] << 7"
<< state.position[3] << 7,” << state.position[4] << 7,7
<< state.position[5] << 7,7
<< state.velocity [0] << 7,7 << state.velocity [1] <<
77 << state.velocity [2] << 7,7 << state.velocity
[3] << 7,7 << state.velocity [4] << 7,7 << state.
velocity [5] << 7,7
<< p.pose.position.x << 7,7 << p.pose.position.y <<
7.7 << p.pose.position.z << 7,7 << p.pose.
orientation.x << 7,7 << p.pose.orientation.y << "7
<< p.pose.orientation.z << 7,7
<0 7)) K0 ") K0 "0 <)
<< 0 <77 <0 <)
<< 0 <77 <0 7)) << 0 <7, << gripper_pos
<< 7,7 << obj << 7,7 << endl;

cout << ”"Dados Salvos” << endl;

}

InicioSkill :: InicioSkill (std:: string name)
as_(nh_, name, boost::bind(&InicioSkill ::executeCB, this, _1),
false),
action_name_ (name)

{
}

InicioSkill::" InicioSkill ()

as_.start () ;

A.1 SOURCE CODE 93

{
}

void InicioSkill ::executeCB(const inicio_skill_msgs::

{

InicioSkillGoalConstPtr &goal)

ros :: NodeHandle n;
UR5 ur(n,11);

RFinger g(n);

float actual_pos[6];
float x_init=goal—>x;
float y_init=goal—y;
float z_init=goal—>z;
float ox=goal—>ox;
float oy=goal—oy;
float oz=goal—>o0z;

bool is_pub=false ,is_init=false ,is_saved=false;
int tries=0;

ros :: Subscriber gripper = n.subscribe(”/
Robotiq2FGripperRobotInput”, 1, &RFinger:: set_state ,&g);

ros :: Subscriber sub = n.subscribe(”/joint_states”, 1000, &UR5::
set_state ,&ur) ;

ros ::Time start_time;

ros :: Duration delta_t;
double delta_t_sec=0;

ros :: Rate loop_rate(10);
while (n.ok()){
if (g.get_status().gACT = 0 && g.is_subbed){
g.init ();
is_init=true;
}else if (g.get_status().gACT = 0 && is_init){
tries++;
}

if (tries = 20){
ROSERROR(” Could not initiate the gripper”);

set_aborted () ;
break;

94

APPENDIX

if (g.get_status().gACT ==1 && !is_pub){
g.set_position (127);

for (int i=0; i < 6;i++){
actual_pos[i]= ur.get_state().position[i];
}

start_time = ros::Time::now();

ur . move_arm (actual_pos ,0,0) ;

ur.ik_move(x_init ,y_init ,z_init ,ox,o0y,0z,1,0,5);
ur.publish () ;

is_pub=true;

}

delta_t= ros::Time::now() — start_time;
delta_t_sec = delta_t.toSec();

if (delta_t_sec > 6 && delta_t_sec < 10){
ROSINFO (” Movement Complet”) ;
set_succeeded () ;
break ;

}

if (lis_saved){
ofstream csv;

csv.open(” /home/fastenufba/logs UR/dados.csv”, std::
ios_base ::app);

CcSV << ”Time’? <<)7”7 << ”Skill” << 77’77 << ”Joint]_” <<
77 << 7 Joint2” << 7)7 << 7 Jointd” << 77 << 7 Joint4d”
<< ") << 7 Jointh” << 7)) << 7 Joint6” << 7,7

<< "Velocityl” << 7,7 << 7Velocity2” << 7)0<< ”

Velocity3” << 7, << ”"Velocityd” << 7/ << 7
Velocityd” << 77<< ”Velocity6” << 7.7

SO IR C ORI R T AR C O C O AR O C
ox” <<) << Toy”? <<) << Vo << 7)Y
SO 5 SR U C O 1 A C U C O 7 A C G
<< Vex” << 7)) << Tey” << V) << Ter” <<
» 7
<< Vax” << 7)) << Tay”? << 7)) << Tag” <<

” ”

, << 7 Gripper Pos” << 7,7 << 7 Gripper
Status” << endl;

is_saved=true;

csv.close ();

A.1 SOURCE CODE 95

if (delta_t_sec > 0 && delta_t_sec < 6){
saveData (ur.get_state () ,ur.get_end_position(),g.
get_position (),g.has_obj(),delta_t_sec);

}

ros ::spinOnce () ;
loop_rate.sleep () ;

}

void InicioSkill ::set_succeeded (std::string outcome)

{

result_.percentage = 100;
result_.skillStatus = action_name_.c_str ();
result_.skillStatus += ”: Succeeded”;
result_.outcome = outcome;

ROSINFO(”%s: Succeeded”, action_name_.c_str());
as_.setSucceeded (result_);
¥

void InicioSkill::set_aborted (std::string outcome)

{

result_.percentage = 0;

result_.skillStatus = action_name_.c_str ();
result_.skillStatus 4= 7: Aborted”;
result_.outcome = outcome;

ROSINFO("%s: Aborted”, action_name_.c_str ());
as_.setAborted (result_);
}

void InicioSkill::feedback(float percentage)
{
feedback_.percentage = percentage;
feedback_.skillStatus = action_name_.c_str ();
feedback_.skillStatus += 7 Executing”;
ROSINFO("%s: Executing. Percentage: %f%%.”, action_name_.c_str (),
percentage) ;
as_.publishFeedback (feedback_);

}

bool InicioSkill::check_preemption ()

{

if (as_.isPreemptRequested() || !ros::ok()){
result_.percentage = 0;
result_.skillStatus = action_name_.c_str ();
result_.skillStatus += ”: Preempted”;

result_.outcome = "preempted”;

96 APPENDIX

ROSINFO("%s: Preempted”, action_name_.c_str());
as_.setPreempted (result_);
return true;

}
else{

return false ;
}

}

A.1 SOURCE CODE 97

Detect ROS Action

#include <ros/ros.h>

#include <actionlib/server/simple_action_server.h>
#include <detect_skill_server/detect_skill_server .h>
#include " Kinect.hpp”

#include ”ObjDetection.hpp”

#include "urb_arm.hpp”

DetectSkill :: DetectSkill(std:: string name)
as_(nh_, name, boost::bind(&DetectSkill ::executeCB, this, _1),
false),
action_name_ (name)

{
}

DetectSkill ::” DetectSkill ()

{
}

void DetectSkill :: executeCB(const detect_skill_msgs::
DetectSkillGoalConstPtr &goal)
{

as_.start () ;

ros :: NodeHandle n;
Kinect cam;

UR5 ur(n,11);

int tries=0;

ros :: Subscriber camera = n.subscribe(”/camera/color/image_raw”,
1, &Kinect :: set_image ,&cam) ;
ros :: Subscriber depth = n.subscribe(”/camera/depth/image_raw”,

1, &Kinect ::set_image_depth ,&cam) ;
ros :: Subscriber cloud= n.subscribe(”/camera/depth_registered/
points”, 1000, &Kinect :: set_point ,&cam) ;

ros :: Rate loop_rate (10);
while (n.ok()){

auto peca= ObjDetec:: aprilDetect (cam, goal—>id , false);
if (peca.x > 0 && peca.y > 0){

ROSINFO(” Found the tag”);
set_succeeded () ;

98 APPENDIX

break ;
telse{

tries++;
¥

if(tries > 15){
ROSERROR(” Tag not found”);
set_aborted () ;
break ;

ros ::spinOnce () ;
loop_rate.sleep () ;

}

void DetectSkill ::set_succeeded (std::string outcome)

{

result_.percentage = 100;
result_.skillStatus = action_name_.c_str ();
result_.skillStatus += ”: Succeeded”;
result_.outcome = outcome;

ROSINFO("%s: Succeeded”, action_name_.c_str());
as_.setSucceeded (result_);

}

void DetectSkill::set_aborted (std::string outcome)

{

result_.percentage = 0;

result_.skillStatus = action_name_.c_str ();
result_.skillStatus += ”: Aborted”;
result_.outcome = outcome;

ROSINFO("%s: Aborted”, action_name_.c_str());
as_.setAborted (result._);

}

void DetectSkill :: feedback (float percentage)
{
feedback_.percentage = percentage;
feedback_.skillStatus = action_name_.c_str();
feedback_.skillStatus += ” Executing”;
ROSINFO("%s: Executing. Percentage: %f%%.”, action_name_.c_str (),
percentage) ;
as_.publishFeedback (feedback_);

}

bool DetectSkill :: check_preemption ()

A.1 SOURCE CODE

{

if (as_.isPreemptRequested() || !ros::ok()){
result_.percentage = 0;
result_.skillStatus = action_name_.c_str ();
result_.skillStatus 4= ”: Preempted”;
result_.outcome = ”preempted”;

ROSINFO(”%s: Preempted”, action_name_.c_str())
as_.setPreempted(result_);
return true;
}
else{
return false;

}
}

)

99

100 APPENDIX

ROS Action Pick

#include <ros/ros.h>

#include <actionlib/server/simple_action_server.h>
#include <pick_skill_server/pick_skill_server .h>
#include <fstream>

#include ”rfinger . hpp”

#include ” Kinect . hpp”

#include " ObjDetection . hpp”

#include "urb_arm.hpp”

void saveData(sensor_msgs:: JointState state ,geometry_msgs::
PoseStamped p, int gripper_pos,int obj,double time,geometry_msgs
:: Point pos_obj,geometry_msgs:: Point pos_cam, float ax, float ay,
float az){
ofstream csv;
csv.open(” /home/fastenufba/logs UR/dados.csv”, std::ios_base::

app) ;
csv << time << 77 << 1 << 77 << state.position [0] << 7,7 <<

state.position [1] << 7,7 << state.position[2] << 7,7 <<

state.position [3] << 7,7 << state.position[4] << 7,7 <<

state.position [5] << 7.7

<< state.velocity [0] << 7,7 << state.velocity [1] << 7,

<< state.velocity [2] << 7,7 << state.velocity [3] <<
77 << state.velocity [4] << 7,7 << state.velocity [5]
<< 77

” 9

<< p.pose.position.y << 7,
77 << p.pose.orientation.x <<

”»
)

<< p.pose.position.x <<
<< p.pose.position.z <<

77 << p.pose.orientation.y << 7,” << p.pose.
orientation.z << 7,7
<< pos_obj.x << 77 << pos_obj.y << 7,7 << pos_obj.z
<< 77 << pos_cam.x << 77 << pos_cam.y << 7.7 <<
pos_cam.z << 7.7
<< ax <K 7)) K ay K7, < az << 7,” << gripper_pos
<< 7)) << ob) << 7)) << endl;

cout << "Dados Salvos” << endl;

}

PickSkill :: PickSkill (std:: string name)
as_(nh_, name, boost::bind(&PickSkill::executeCB, this, _1), false
)

action_name_ (name)

{

as_.start () ;

}

A.1 SOURCE CODE 101

PickSkill::~ PickSkill ()
{
}

void PickSkill ::executeCB (const pick_skill_msgs::
PickSkillGoalConstPtr &goal)
{

ros :: NodeHandle n;

Kinect cam;

UR5 ur(n,11);

bool is_pub=false;

float actual_pos[6];
RFinger g(n);

geometry_msgs :: Point po,pf;

ros :: Subscriber gripper = n.subscribe(”/
Robotiq2FGripperRobotInput”, 1, &RFinger:: set_state ,&g);

ros :: Subscriber sub = n.subscribe(”/joint_states”, 1000, &UR5::
set_state ,&ur) ;

ros :: Subscriber camera = n.subscribe(”/camera/color/image_raw”,
1, &Kinect ::set_image ,&cam) ;

ros:: Subscriber depth = n.subscribe(”/camera/depth/image_raw”,
1, &Kinect ::set_image_depth ,&cam) ;

ros :: Subscriber cloud= n.subscribe(”/camera/depth_registered/
points”, 1000, &Kinect::set_point ,&cam);

ros :: Subscriber status= n.subscribe(”/follow_joint_trajectory/
status”, 1000, &URH:: set_status ,&ur);

ros :: Time start_time;

ros :: Duration delta_t;
double delta_t_sec=0;

ros :: Rate loop_rate(10);

while (n.ok()){
auto peca= ObjDetec:: aprilDetect (cam, goal—>id , false);
auto xo=peca.x;
auto yo=peca.y;

if (xo > 0 && yo > 0 && !is_pub && cam. cloud_filled){
po=0bjDetec :: pixelTo3DPoint (cam. get_cloud () ,x0,yo0);
auto testenan=po.z;

if (ur.get_state().position[1l] != 0 && !isnan(testenan)){
auto ox=ur.get_end_position ().pose.orientation.x;
auto oy=ur.get_end_position().pose.orientation.y;

102

}

APPENDIX

auto oz=ur.get_end_position ().pose.orientation.z;

po.x=po.x — 0.03263;
po.y=po.y — 0.044;
po.z=po.z — 0.327004;
pf=ur.homotransform (po) ;

for (int 1i=0; i < 6;i++){
actual_pos[i|]= ur.get_state().position[i];
}

ur . move_arm (actual_pos ,0,0) ;

ur.ik _move (pf.x,pf.y,pf.z,0x,0y,0z,1,0,5);
ur. publish () ;

is_pub=true;

start_time = ros::Time::now();

}
}

delta_t= ros::Time::now() — start_time;
delta_t_sec = delta_t.toSec();

if (delta_t_sec > 0 && delta_t_sec < 10){
saveData (ur. get_state () ,ur.get_end_position () ,g.
get_position (),g.has_obj(),delta_t_sec ,pf,po,ObjDetec
::0x,0bjDetec ::0y,ObjDetec:: 0z);

}

if (delta_t_sec > 6 && delta_t_sec < 10 && ur.get_status () <=
3)4
ROS_INFO (” Movement Completed”) ;
set_succeeded () ;
break ;
}else if(ur.get_status() >= 4 && ur.get_status() < 10 &&
delta_t_sec > 6 && delta_t_sec < 10){
ROSERROR(”Arm Collided”);
set_aborted () ;
break ;

void PickSkill ::set_succeeded (std::string outcome)

{

result_.percentage = 100;
result_.skillStatus = action_name_.c_str () ;

A.1 SOURCE CODE 103

result_.skillStatus 4= ”: Succeeded”;
result_.outcome = outcome;

ROS_INFO("%s: Succeeded”, action_name_.c_str());
as_.setSucceeded (result_);

}

void PickSkill ::set_aborted (std::string outcome)

{

result_.percentage = 0;

result_.skillStatus = action_name_.c_str();
result_.skillStatus 4= 7: Aborted”;
result_.outcome = outcome;

ROSINFO("%s: Aborted”, action_name_.c_str ());
as_.setAborted (result_);

}

void PickSkill :: feedback(float percentage)
{
feedback_.percentage = percentage;
feedback_.skillStatus = action_name_.c_str ();
feedback_.skillStatus += 7 Executing”;
ROSINFO("%s: Executing. Percentage: %f%%.”, action_name_.c_str (),
percentage) ;
as_.publishFeedback (feedback_);

}

bool PickSkill ::check_preemption ()

{

if (as_.isPreemptRequested() || !ros::ok()){
result_.percentage = 0;
result_.skillStatus = action_name_.c_str ();
result_.skillStatus 4= ”: Preempted”;
result_.outcome = ”preempted”;

ROSINFO(”%s: Preempted”, action_name_.c_str());
as_.setPreempted (result_);
return true;

}

else{
return false;
¥

}

104 APPENDIX

ROS Action Grasp

#include <ros/ros.h>

#include <actionlib/server/simple_action_server.h>
#include <grasp_skill_server/grasp_skill_server.h>
#include " rfinger .hpp”

#include <iostream>

#include "urb_arm.hpp”

#include <fstream>

using namespace std;
void saveData(sensor_msgs:: JointState state ,geometry_msgs::

PoseStamped p, int gripper_pos,int obj,double time){

ofstream csv;
csv.open(” /home/fastenufba/logs UR/dados.csv”, std::ios_base

app);
csv << time << 77 << 2 << 77 << state.position [0] << 7,7
<< state.position[l] << 7,7 << state.position[2] << ”.)”
<< state.position[3] << 7,7 << state.position[4] << 7.
<< state.position[5] << 7,7
<< state.velocity [0] << 7,7 << state.velocity [1] <<
7)) << state.velocity [2] << 7,7 << state.velocity
[3] << 7,7 << state.velocity [4] << 7,7 << state.
velocity [5] << 7,7
<< p.pose.position.x << 7,7 << p.pose.position.y <<
7? << p.pose.position.z << 7,7 << p.pose.
orientation.x << ”7,” << p.pose.orientation.y << 7,7
<< p.pose.orientation.z << 7,7
<0 7)) K0 W' K0 "0 o <)
<< 0 <7 <0)
<0 <77 <0 <77 << 0 << 7,7 << gripper_pos
<< 7)) << ob) << 7)) << endl;

cout << "Dados Salvos” << endl;

}

GraspSkill :: GraspSkill (std :: string name)
as_(nh_, name, boost::bind(&GraspSkill::executeCB, this, _1),
false),
action_name_ (name)

{

as_.start ();

A.1 SOURCE CODE 105

}

GraspSkill:: ™ GraspSkill ()

{
}

void GraspSkill ::executeCB (const grasp_skill msgs ::
GraspSkillGoalConstPtr &goal)
{

ros :: NodeHandle n;
RFinger g(n);
g.init ();

UR5 ur(n,11);

bool is_init=false;

int tries=0;

ros :: Subscriber gripper = n.subscribe (”/
Robotiq2FGripperRobotInput”, 1, &RFinger:: set_state ,&g);

ros :: Time start_time;

ros :: Duration delta_t;
double delta_t_sec=0;

ros :: Rate loop_rate (10);
while (n.ok()){

if(g.get_status().gACT ==0){

tries4++;
}
if(tries = 10){
ROSERROR(” Gripper not initialized”);
set_aborted () ;
break ;
}

if(g.get_status().gACT ==1 && !is_init){
g.set_speed (25);
g.set_force (25);
g.close();
is_init=true;
start_time = ros::Time::now();

106 APPENDIX

delta_t= ros::Time::now() — start_time;
delta_t_sec = delta_t.toSec();
cout << ”"Time passed: 7 << delta_t_sec <<endl;

if (delta_t_sec > 2 && delta_t_sec < 10 && is_init){
if (g.has_obj() = 2){
cout << "Got the obj” << endl;

set_succeeded () ;
break;

telse{
ROSERROR(”OBJ LOST”) ;

set_aborted () ;
break ;

}

if (delta_t_sec > 0 && delta_t_sec < 6){
saveData (ur. get_state () ,ur.get_end_position(),g.
get_position (),g.has_obj(),delta_t_sec);

}

ros ::spinOnce () ;
loop_rate.sleep () ;

}

void GraspSkill ::set_succeeded (std::string outcome)

{

result_.percentage = 100;

result_.skillStatus = action_name_.c_str ();
result_.skillStatus += ”: Succeeded”;
result_.outcome = outcome;

ROSINFO("%s: Succeeded”, action_name._.c_str());
as_.setSucceeded (result_);

}

void GraspSkill ::set_aborted (std::string outcome)

{

result_.percentage = 0;

result_.skillStatus = action_name_.c_str ();
result_.skillStatus += ”: Aborted”;
result_.outcome = outcome;

ROSINFO("%s: Aborted”, action_name_.c_str());
as_.setAborted (result_);

}

void GraspSkill :: feedback(float percentage)

{

A.1 SOURCE CODE 107

feedback_.percentage = percentage;

feedback_.skillStatus = action_name_.c_str ();

feedback_.skillStatus += 7 Executing”;

ROSINFO("%s: Executing. Percentage: %f%%.”, action_name_.c_str (),
percentage) ;

as_.publishFeedback (feedback_) ;

}

bool GraspSkill::check_preemption ()

{

if (as_.isPreemptRequested() || !ros::ok()){
result_.percentage = 0;
result_.skillStatus = action_name_.c_str ();
result_.skillStatus += ”: Preempted”;
result_.outcome = ”preempted”;

ROSINFO("%s: Preempted”, action_name_.c_str());
as_.setPreempted(result_);
return true;
}
else{
return false;

}

