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Resumo

A presente dissertação apresenta uma nova abordagem para compensação de atraso
e de zona morta com parâmetros desconhecidos, ambos na entrada de sistemas de
segunda ordem baseados em receptâncias. O modelo de segunda ordem baseado
em receptâncias é usado em várias aplicações fundamentais, destacando-se o con-
trole ativo de vibração de sistemas mecânicos vibracionais. A abordagem pro-
posta é baseada em um preditor de Smith filtrado em conjunto com um estimador
adaptativo em tempo discreto, ambos modelados em receptâncias, para lidar, re-
spectivamente, com o atraso e zona morta. Através do preditor de Smith filtrado,
o erro de predição, relativo às discrepâncias entre modelo nominal e saída futura
em regime permanente, tem seu resultado tratado pelo filtro de erro de predição.
Este filtro pode ser projetado para atender a um compromisso entre o desem-
penho de atenuação de perturbações na entrada ou saída do sistema em estudo,
bem como atenuar os efeitos oriundos de erros de modelagem e relativos à ro-
bustez, além de garantir estabilidade interna para os casos nos quais o modelo é
BIBO (bounded-input bounded-output) estável. Dessa forma, o preditor e a com-
pensação de zona morta são usados para permitir que um projeto baseado num
sistema linear sem atraso seja usado para controlar um sistema com atraso e zona
morta. O tratamento da zona morta é realizado por um algoritmo de estimação
adaptativo, que é composto por um observador de perturbação em tempo discreto,
que utiliza os sinais de deslocamento, velocidade e esforço de controle para es-
timar os parâmetros desconhecidos, além da compensação por ação inversa com
estratégia anti-chattering. A principal contribuição deste trabalho é combinar um
mecanismo adaptativo de zona morta desconhecida e uma compensação de atraso
de tempo baseada em receptâncias em um projeto unificado. Alguns exemplos
numéricos ilustram a eficácia da abordagem proposta.

Palavras-chave: Receptância, Preditor de Smith, Controle de vibrações, atraso
no tempo, zona-morta, controle adaptativo.
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Abstract

The present dissertation presents a novel approach for the time delay and the dead-
zone compensation with unknown parameters, both at the input of second-order
systems based on receptances. The second-order model based on receptance is
used in several fundamental applications, most notably the active vibration con-
trol of mechanical vibrational systems. The proposed approach is based on a
filtered Smith predictor in conjunction with a discrete-time adaptive estimator,
both modeled on receptances, to deal, respectively, with delay and dead zone.
Through the filtered Smith predictor, the prediction error, related to the discre-
pancies between the nominal model and future steady-state output, has its result
treated by the prediction error filter. This filter can be designed to meet a compro-
mise between the attenuation performance disturbances in the input or output of
the system under study, as well as to attenuate the effects arising from modeling
errors and related to robustness, in addition, to guaranteeing internal stability for
cases in which the model is BIBO (bounded-input bounded-output) stable. In this
way, predictor and dead-zone compensation are applied to allow a design based on
a linear system without delay to be used to control a system with delay and dead
zone. The treatment of the dead zone is performed by an adaptive estimation algo-
rithm, which is composed of a disturbance observer in discrete time, which uses
the displacement, velocity and the control effort signals to estimate the unknown
parameters, in addition to the inverse action compensation, with an anti-chattering
strategy. The main contribution of this work is to combine an adaptive unknown
dead zone mechanism and a time delay compensation based on receptances in a
unified design. Some numerical examples illustrate the effectiveness of the pro-
posed approach.

Keywords: Receptance, Smith predictor, Vibration control, Time delay, Dead
zone, Adaptive control.
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Chapter 1

Introduction

The closed-loop control of mechanical systems, described by second-order

models, which can effectively represent several real control problems, such as the

active control of mechanical vibrations, oscillations in electrical networks and vi-

broacoustic phenomena, among others, has received increasing attention due to

its relevance in practice [1], [2]. In this kind of systems, state feedback control

is implemented by using state measurements, which provide useful properties for

analysis and synthesis purposes [3]. The receptance - also called the frequency

response - is the transfer matrix that relates the input and output of a linear me-

chanical system, which is subject to harmonic forces as input [4]. The second-

order-based approaches’ benefits have been reported in remarkable related works

[5], [6], in which the design and control of the second-order system based on the

receptance approach have been widely used because the receptance model can

be obtained experimentally without the necessity of the knowledge of the mass,

stiffness and damping matrices in some cases. Besides, it is possible to perform

the total or partial allocation of poles and zeros, as shown in [7], including the

influence and analysis of the influence of the time delay [5], [8].

As presented in [9], [10] and several related works, time delay introduces ad-

verse effects in control systems, such as the effects of disturbances are not noticed

until the delay has elapsed; the effects of the control action take some time to be

noticed on manipulated variables of the system and the control action, based on

current information, tries to correct a situation that happened in the past. Thus,

a solution to deal with the time-delay effect can be obtained through the use of

controllers with time-delay compensation (DTC). The first DTC was proposed

in [11], known as Smith predictor (SP). However, it should be noted that the SP
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cannot be used in open-loop unstable processes, and the disturbance rejection re-

sponses depend on the open-loop poles. Thus, a modified structure based on SP is

proposed in [9], [10], [12], [13], called filtered Smith predictor (FSP), in which a

filter is used in the prediction error, allowing adjustments to provide closed-loop

robustness, noise attenuation and disturbance rejection. It can also be used for

processes with unstable open-loop poles [5], [12], [14].

In practice, systems present significant nonlinearities, such as the dead zone

(also named free-play) and saturation, among others, generally when activated

within a control system [15], [16]. The dead-zone nonlinearity can occur in pneu-

matic, piezoelectric, and hydraulic actuators (robot manipulators [17], fast-tool

servos [18], among others), having several unwanted effects on control systems

and degrading control accuracy. They can also lead to limit cycles or system ins-

tability, even in closed-loop, and may be accompanied by saturation [18], [19].

Besides, it is known that for dynamical systems affected by the dead zone, the

stability and control system design in closed-loop control systems are important

research topics in control theory. The parameters that describe the characteristics

of the dead zone may not be accurately known, and such inaccurate information

about the dead zone can lead to undesired dynamic performance or instability of

closed-loop dynamic systems [19]–[21]. The study of adaptive control for systems

subject to dead-zone nonlinearity in actuators using an inverse function to tackle

its effects is addressed in classical works [15], [21], [22]. Several approaches for

adaptive control with performance and robustness trade-offs have been reported,

including those involving nonlinear systems, with the use of a stability evaluation

via Lyapunov sense [22]–[24] to delimit candidate functions which will make

the systems under evaluation locally stable. This conception often can increase

the complexity in the mathematical treatment of the algorithms for adapting the

parameters of the functions and the dead-zone and time-delay uncertainties, com-

bined or not, which can become a challenge for practical applications.

1.1 Motivations

The compensation of nonlinearities, such as the dead zone, has been widely

discussed and addressed in applications involving linear and nonlinear systems,

2



with an approach through adaptive techniques and evaluation regarding stability

and robustness [25], [26]. The dead-zone nonlinearity is increasingly present in

electrical, hydraulic and pneumatic equipment, among others, due to technologi-

cal development, offering a great range of resources to end-users, which requires

solutions for mathematical treatment, aiming to mitigate its effects [27], [28].

In several works about receptances, a great concern is demonstrated in the

improvement of techniques of partial and total allocation of marginally stable or

unstable poles and zeros through the state feedback matrices [7], [29], aiming to

eliminate the closed-loop instability that can be potentiated in the presence of time

delay [5], [8] or even perform the treatment of eigenvalues that represent an unsta-

ble behavior of the system [6], [30], along with its frequency response. However,

aspects about the presence and influence of dead zones or other associated nonli-

nearities, as well as time delay, on the systems represented by receptances, are not

addressed in numerical simulation works or practical experiments.

Thus, the negative effects of input delay and dead-zone, both at the input of

system, motivate the combined development of a filtered Smith predictor [5], [6],

[14] and an adaptive nonlinear dead-zone compensator for accurate estimation of

the uncertain parameters inherent for unknown dead zone. The main objective

is to achieve the performance requirements such as robustness and disturbance

rejection based on a project for a linear model without delay.

1.2 Related Works

In continuity with the concepts related to the mathematical theory of vibration

absorption presented in [4], Mottershead and Ram presented in [3] the method for

pole/zero assignment for state feedback in active vibration suppression based on

measured receptance, where the pole or zero assignment problem uses the cha-

racteristic polynomial of closed-loop receptance matrix obtained from Sherman-

Morrison formula, which gives the inverse of a matrix with a rank-1 modification

in terms of the inverse of the original matrix. In [31], [32], the same concepts

and formulation are applied for time delay at the input of receptance-based sys-

tem for partial pole placement, without spillover. The active vibration control for

multiple-input multiple-output (MIMO) system by partial pole placement is intro-

3



duced in [7], where the mathematical formulation considers the quadratic eigen-

value problem based on eigenvalues and eigenvectors of the system, for changing

the undesirable open-loop poles to a given new position, keeping unchanged the

remaining open-loop poles. An experimental extension related to results obtained

from [7] is described in [33] and in [34] is presented a strategy for multi-input

control from measurement output feedback (acceleration, velocity and displace-

ment) systems, where control law is composed by gain matrices aiming to obtain

realisable control gains. In [35], [36], the partial pole assignment for asymmetric

receptance-based systems is presented for a friction-induced vibration problem,

also studied in [29], where uncontrollability condition is used. Also, in [37],

an output feedback-linearisation theory is presented for the treatment of nonli-

near vibration problems (friction-induced vibration system, viscous damping) by

a receptance-based approach, investigating the stability of the zero dynamics. In

[38], active vibration control by receptance-based method for a nonlinear system

(Duffing oscillator) is explained, where an iterative Sherman-Morrison method is

used to reassign complex poles. Practical applications for feedback linearisation

and receptance method for non-smooth nonlinearity in a lumped mass system with

a piece-wise linear spring is described on [1], [39]. In [2], a practical implemen-

tation is described based on method for active vibration control, for a two-link

flexible robot arm in the presence of time delay, by means of robust pole place-

ment and Nyquist stability criterion for stability margin. Some works address the

concepts of sensitiveness and robustness for state and derivative feedback designs

for symmetrical [40] and asymmetrical systems [41], whereas in [42] the proposed

approach needs only of the system and closed-loop feedback matrices for partial

quadratic eigenvalue assignment problem (PQVEAP) in active vibration control.

Related to works about time delay and its compensation (also known dead-

time compensation, DTC), two relevant articles about the design of feedback con-

trol in second-order symmetric and asymmetric linear involving receptance-based

systems under long input time delay are described in [5], [6]. In [5], a filtered

Smith predictor (FSP) is applied to compensate time delay by providing a nominal

characteristic polynomial without delay. The prediction is obtained by employing

the receptance approach in the conception of the predictor, and thus the design is

fully made at the frequency domain. The proposal uses a filtered prediction error
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which can be applied to attenuate the undesired effect of the poorly damped eigen-

values and ensure the internal stability of the marginally stable case, dealing with

the compromise between performance and robustness. In [6], a discrete-time FSP

version is proposed for asymmetrical receptance-based systems to deal with un-

stable second-order systems, an issue in friction-induced vibration and aeroelastic

systems. Among the applications of FSP for systems subject to input nonlinea-

rities, in [14], a structure using FSP for inputs represented by nonlinear functions

is proposed. The results have demonstrated that the filtered prediction strategy

for systems with input nonlinearity and delays can be used to meet a compromise

between robustness, internal stability, and perturbation rejection as in the linear

FSP presented in [13]. The use of the filtered Smith predictor has been recently

addressed, as can be seen in practical applications described in [43], [44], in addi-

tion to works that propose modified prediction structures for handling higher time

delays [14], [45] and in open-loop unstable plants [46]. The use of the small-gain

theorem to evaluate the stability criteria for time delays is described in [47]. The

analysis of noise influence in DTCs for unstable processes is described in [48],

where the FSP approach is analyzed to consider noise attenuation.

Relevant works deal with dead-zone nonlinearity and its mathematical mode-

ling [49]–[51] by describing functions, highlighting the Nyquist criterion’s fre-

quency domain to evaluate the stability of systems under the dead-zone or other

nonlinearities, such as friction, backslash phenomena, among others. In [52],

[53], a receptance-based limit cycle prediction method based on describing func-

tions (DF) and Sherman-Morison formula is proposed for dealing with nonlinear

structures. Also, with representing the nonlinearity via DFs, the nonlinear ac-

tive control theory using measured receptance is developed without the presence

of time delay. In [38], is presented an application of the receptance method to

nonlinear systems for active vibration control characterised using DF.

Classical approaches about adaptive control for systems subject to dead-zone

actuators, using an adaptive dead-zone inverse function to minimize the effects of

dead-zone, both symmetrical or asymmetrical, are presented in [21], [22], where

this approach is applied in a model reference adaptive control to include con-

trols of unknown system with an unknown dead zone. Also, in [15], the adaptive

dead-zone mitigation is also presented, but is assumed that both the input and
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output of the dead zone are available for measurement, which is not always an

affordable condition. It is important highlight that, in [15], [21], [22], the chat-

tering mitigation on its solution and also time delay is not considered. Besides,

some approaches to reach a compromise between performance and robustness are

presented, including those involving nonlinear systems, according to the works

recently developed in [17], [23], which use the stability evaluation via Lyapunov

sense criterias [54], which is also conceptually applied in [21], [22], to delimit

candidate functions which will make the systems under evaluation stable in cer-

tain convergence regions, where this conception increases at great amount the

complexity in the mathematical treatment of the algorithms for adapting the pa-

rameters of the functions and the dead-zone and time delay uncertainties, com-

bined or not. In a similar way, in [26], an active disturbance rejection control

by an extended state observer is designed for nonlinear systems to estimate dead-

zone input and external disturbances, by using of an output feedback linearization

control, where its stabilty proof is also performed by Lyapunov theory. It is also

important to highlight that in [17], [20] and [55], techniques for estimating the

parameters of the dead-zone, the nonlinear systems under study, and the uncer-

tainties in the perturbations on the systems are also used, but focused on dead-

zone nonlinearity. In [27], an adaptive control to deal with the dead-zone and time

delay issues in actuators was proposed, based on a type-2 fuzzy neural network

integrating using a Riccati-like equation. In [56], an adaptive fuzzy neural net-

work was proposed for electric-hydraulic systems, also considering a nonlinear

system and with the asymmetric dead-zone, in order to solve the reference track-

ing problem [55]. In [20], an adaptive controller approach for flutter and free-play

suppression in an aeroservoelastic system modeled by receptance representation,

is presented, but no time delay is considered. In [23], results for nonlinear systems

defined via Lyapunov-Krasovskii sense are presented, considering the dead-zone

as asymmetric and variable time delay in the reference tracking situation, but not

dealing with the performances in the transient regime and delay mitigation, es-

tablishing on its analysis only boundary conditions for time delay. In a recent

work, [18], a practical application is presented using a proposal with the Smith

predictor and anti-windup mechanism, for saturation compensation with inverse

dead-zone and time delay uncertainties, for high-speed servo-mechanical systems

represented by modeling second-order linear. In [28], an adaptive approach based
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on an output tracking problem is considered for a class of uncertain nonlinear sys-

tems but only considering non-symmetric unknown dead-zone input. In [24] (and

the references therein), an adaptive control scheme is applied to uncertain time-

delay systems with non-symmetric dead-zone input and any information on the

dead-zone input is not required to be known. Hence, it is possible to consider that,

as also highlighted in [18], the adaptive methods proposed in the control literature

on dynamical systems with uncertain input dead-zone (with or without delays) are

not as simple as the control strategies for undelayed linear systems.

1.3 Objectives and Contributions

This work aims to propose an approach to deal with time delay and unknown

asymmetric dead-zone at the input of receptance-based systems for active vibra-

tion control, where is considered, in the same design, the identification and deal-

ing of unknown dead-zone nonlinearity and mitigation of long time delay, both for

receptance-based systems, which is a benchmark for mechanical vibrating second-

order systems.

In this way, the main control challenges can be summarized as follows: (i) The

active vibration control should be performed by a typical receptance-based pole

placement, where the control law is obtained from a linear combination of the

displacement and velocity of the system (state feedback control) (ii) The filtered

Smith predictor should be used in order to preserve closed-loop stability in the

presence of delay despite the pole placement based on an undelayed model and

the infinity dimensional nature of the closed-loop characteristic polynomial. The

main benefit of the receptance-based filtered Smith predictor comes from the fact

that the feedback gains can be designed to control a delayed second-order system

based on a delay-free receptance model. This simplifying concept is now explored

in the presence of uncertain input dead-zones combined with delays; (iii) The

unknown dead-zone nonlinearity at the input of the system should be compensated

based on two estimated break-point parameters in order to achieve steady-state

convergence.

In this dissertation, the main contributions are: (i) the use of filtered Smith

predictor approach proposed in [5], [6], which is modeled by receptance, which
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considers active vibration control and long time delay compensation; (ii) associ-

ated with this FSP approach, an adaptive inverse dead-zone compensation scheme

is added, whose unknown dead-zone bounds parameters will be dynamically es-

timated through a discrete-time unknown input observer - UIO - based on state

vector from the system (displacement and velocity) and the feedback control law

signal, calculated directly from state vector; (iii) the dead-zone inverse compensa-

tion strategy to be proposed provides chattering mitigation; (iv) the BIBO stability

is addressed, where an equivalent linear bounded signal disturbance can represent

the approximated dead-zone nonlinear compensation. Simulation test cases are

presented to illustrate the benefits of the proposed strategy.

1.4 Master’s Dissertation Structure

This dissertation is organized as follows:

• Chapter 2 is dedicated to the presentation of theoretical concepts. In item

2.1 addresses relevant aspects of the representation of vibrating systems

by receptance matrix and partial pole assignment for active control vibra-

tion in single-input and multi-input systems. In item 2.2, the main theo-

retical concepts about dead-zone nonlinearity in control systems are pre-

sented, concerning its modeling and stability analysis through describing

function method. In item 2.3, the relevant considerations about receptance-

based symmetric linear systems time-delay compensation using the filtered

Smith predictor approach is presented. In item 2.4, the considerations about

the sampled-data version approach using filtered Smith predictor to control

second-order receptance-based asymmetrical systems are presented, where

the approach to dealing with unstable eigenvalues and time delay is high-

lighted.

• On Chapter 3, is presented the conceptual aspects of receptance-based fil-

tered Smith predictor with the dead-zone compensation approach to jointly

dead with time delay and dead-zone nonlinearity, extending its application

for both continuous and discrete time domain. Here are presented conside-

rations about BIBO stability for the proposed approach.
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• On Chapter 4, the receptance-based discrete-time unknown input observer

- UIO - for adaptive dead-zone compensation approach is presented, where

its mathematical formulation about adaption mechanism is detailed. Si-

mulation case studies are presented to illustrate the benefits of the proposed

strategy.

• On Chapter 5, is presented the concluding remarks conclusion of the pro-

posed approach in this work for the mitigation of long time delay and un-

known dead-zone nonlinearity. Some suggestions for future work related to

the topic are also presented in this chapter.

• Appendix A contains the general mathematical description for describing

function representation. Appendix B details the computation of continuous-

time and discrete-time domain error prediction scalar filters, respectively.

Appendix C contains the convergence analysis for unknown input observer

for adaptive dead-zone compensation illustrated in Chapter 4.
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Chapter 2

Preliminaries Fundamentals

This chapter presents the preliminary concepts used in the proposed approach.

Initially, the background to define receptance-based models is presented. Later,

topics about dead-zone nonlinearity and its describing functions are presented. Fi-

nally, the filtered Smith predictor in the continue and discrete-time domain mod-

eled by receptance-based systems is presented.

2.1 Vibrating systems modeled by receptance-based
method

2.1.1 Receptance-based formulation

Consider second-order linear systems in the form:

Mẍ(t)+Cẋ(t)+Kx(t) = f(t), (2.1)

where M, C, K ∈ Rn×n are, respectively, the mass, damping and stiffness matri-

ces, M � 0, C � 0, K � 0, x(t) ∈ Rn is the displacement vector and f(t) ∈ Rn is

an external vector force. A matrix B ∈ Rn×m is defined as the influence matrix

that represents the actuator configuration, where f(t) is given then as follows:

f(t) = Bu(t− τ)+d(t). (2.2)

The full-state feedback control law u(t − τ) ∈ Rm, considering time delay

τ > 0 at the input of the system, is typically defined by:
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Figure 2.1: Receptance-based system with full-state feedback control representa-
tion.

u(t− τ) = Fẋ(t− τ)+Gx(t− τ), (2.3)

where F ∈ Rm×n and G ∈ Rm×n are the feedback gain matrices, designed to

provide a specific closed-loop performance. The control law is obtained from a

linear combination of the state of the system, i.e., the position and the velocity of

the various degrees of freedom, d(t) ∈ Rn×m is a bounded external disturbance.

The receptance-based system with full-state feedback control representation is

displayed in Fig.2.1. It should be noted that each nonzero term in B implies the

use of an actuator and each nonzero term in F or G implies the use of a sensor [3],

[57]. Combining (2.1), (2.2), (2.3) and taking its unilateral Laplace Transform,

the closed-loop dynamical law, for d(t) = 0 is given by:

[Ms2 +(C−BFe−sτ)s+(K−BGe−sτ)]X(s) = 0 (2.4)

The open-loop receptance or simply receptance H(s) is defined by:

H(s) = (Ms2 +Cs+K)−1. (2.5)

where this type of representation is relevant because the second-order linear model

can be directly obtained from an experimental data-set (so called modal test), that
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is, it is not necessary to evaluate or to know the structural, M, C, K matrices.

Besides, as highlighted in [7], there is no requirements for model reduction and

for the using of an observer to achieve state variables. Also, it is important to

note that [7]: (i) it is not needed to place a sensor at each degree of freedom of

the system, where the number of sensors can be defined by the number of pairs

of complex-conjugated poles to be exactly assigned; (ii) in principle, all the poles

of the system can be assigned using a single actuator [31]; (iii) this description is

useful for high-dimension systems [3], [4] and it can be directly used to derive the

control law.

The closed-loop receptance matrix of a system under full state feedback con-

trol law described in 2.4 can be expressed in terms of the original open-loop re-

ceptance H(s), by using the Matrix Inversion Lemma as follows:

Ĥ(s) = {H(s)−1−B[sF+G]e−sτ}−1 (2.6)

= H(s)+H(s)B{I− [sF+G]e−sτH(s)B}−1[sF+G]e−sτH(s)

where I ∈ Rn×n is the identity matrix. The Ĥ(s) representation is equivalent to

the Sherman-Morrison formula [3], [57] with multiple inputs and without delay

and {I− [sF+G]H(s)Be−sτ}−1 is the closed-loop characteristic equation, whose

dimension is defined by the number of inputs m instead of the state dimension n,

which may be relevantly smaller than the system dimension [6].

Additionally, the unilateral Laplace Transform for the displacement vector can

be expressed by:

X(s) = e−sτH(s)BU(s)+W(s) (2.7)

The effect of the initial conditions and external disturbances W(s) is described

as:

W(s) = H(s)[(Ms+C)x(0)+Msẋ(0)]+H(s)D(s) (2.8)

In the next subsection, the receptance-based representation for asymmetrical

systems will be presented.

2.1.1.1 Receptance-based representation for asymmetrical systems

In general, the equations of motion of discretized linear vibration systems un-

der conventional loads have symmetric mass, stiffness, and damping matrices.
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However, when some internal forces are presented, such as friction and aerody-

namic load, these system matrices can be asymmetric. Examples can be found in

[6], [41]. In a dynamics context, they are self-excited vibrations and susceptible,

for example, to flutter instability. The flutter is a class of vibrations induced by

non-conservative forces when occurs relative motion between flexible structures

and air [58]. Besides, for the system in which the vibration is generated by fric-

tion force, the symmetry of the stiffness matrix or damping matrix, or both, are

violated. These asymmetric systems are prone to dynamic instability as a result

of some of the eigenvalues being on the right-half-side of the complex plane [29],

[41].

For asymmetrical receptance-based systems, the K and C symmetrical matri-

ces can be rewritten by K = Ks +Kas and C = Cs +Cas, where Cs = CT
s and

Ks = KT
s are, respectively, the damping and stiffness matrices that contain sym-

metrical components and Cas 6= CT
as and Kas 6= KT

as are the asymmetrical compo-

nents for damping and stiffness, respectively. Considering that at least the asym-

metrical parts Cas and Kas are known, then the full system open-loop receptance

H(s) with the asymmetrical parts, is given by [59]:

H(s) = (Ms2 +Css+Ks +Cass+Kas)
−1 (2.9)

and applying the inversion lemma in H(s):

H(s) = [I+Hs(s)(Cass+Kas)
−1]Hs(s) (2.10)

where the Hs(s) is the open-loop receptance for the symmetrical term. It is rele-

vant to point out that H(s) is difficult to measure in practice. So, the representation

of H(s) in terms of Hs(s) is valid, such that Hs(s) is easier to measure.

In a similar way to symmetrical case, the closed-loop receptance Ĥ(s) for

asymmetrical system, including the time delay, can be expressed by 2.6, where

it is possible to note that the characteristic equation in the last equation presents

a similar formulation, compared to the symmetrical case, which allows apply-

ing pole placement techniques based on symmetrical matrices that composes the

receptance Hs(s). In this dissertation, the asymmetrical representation will be ap-

plied in a discrete-time filtered Smith predictor, described in a subsequent chapter.
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In the next subsection, it will be presented the pole placement methods for

single and multiple input systems based on state feedback control.

2.1.2 Active vibration control by pole placement methods

The dynamics of the vibrating systems are naturally governed by second-order

differential equations. In practice, the vibration control problems are formulated

in a state-space form leading to systems of second-order differential equations,

and several pole assignment techniques exist to achieve pole placement in state-

space setting [60]. Besides, undesirable vibration generated from machines and

natural sources may lead to degradation of machine performances, failure of struc-

tures, among others. It can be reduced in many ways. One of them, the active pole

assignment based on receptance modeling, is to shift natural frequencies away

from the excitation frequencies to avoid resonances and/or to add damping to pre-

vent excessive vibration, as presented in [32], [57] and references therein.

2.1.2.1 Full pole placement method

The full pole placement method based on receptance representation, where the

all eigenvalues need to be reassigned to predetermined values, was presented in

[3], [57]. For this, considering the eq.(2.6), the characteristic polynomial of the

closed-loop system can be rewritten by I− (G+Fs)H(s)Be−sτ, and the problem

of assigning the poles of the system to predetermined values µ1, µ2, ... , µ2n

may be expressed as follows: given M, C, K, B, and 2n required eigenvalues µk,

k = 1,2, ...,2n, where n ∈ N∗ is the order of the system, find the control vectors F
and G such that the 2n given values µk are eigenvalues of the closed-loop system,

i.e.:

[H(s)B]T (GT +FT s) = Iesτ (2.11)

where, to solve this problem, is possible to define:

rT
k = [H(sk)B]T (2.12)

and eq.(2.11) can be defined by:
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
rT

1 s1rT
1

rT
2 s2rT

2
...

...
rT

2n s2nrT
2n


[

GT

FT

]
= I


es1τ

es2τ

...
es2nτ

 (2.13)

and the control vectors F and G are obtained by the solution of the set of 2n×2n

linear equations, where this solution is expressed in terms of measured recep-

tances, so in practice there is no need to know or to evaluate the system matrices

M, C and K. Furthermore, as described in [3], [57], the assignment is possible

whenever the matrix on the left-hand side of eq.(2.13) is invertible, which, in turn,

the system is controllable and µk, k = 1,2, ...,2n are distinct. Due to the presence

of the time delay, the closed-loop characteristic equation has generally an infinite

number of roots over the complex plane. Hence, assigning 2n eigenvalues in such

a system does not guarantee that the dynamics of the system are under control. In

[8], based on the ideas dealt in [57], an analysis is presented, based on concepts

of classical control theory, as system margins, Nyquist plots and Padé approxima-

tions for time-delay effects can be used to carry out a posteriori analysis of the

closed-loop characteristic equation.

2.1.2.2 Partial pole placement method considerations

Based on full assignment pole theory, in the partial pole placement issue, the

main objective is to reassign a subset with the p first eigenvalues/poles of the full

set 2n of open-loop poles, keeping the remaining poles constant. The develop-

ment of this method for single-input receptance-based systems and considering

time delay at the input was detailed on [32], for single-input systems. In [7], the

multi-input receptance-based systems partial pole assignment is detailed, where

the method considers in its formulation the assignment of eigenvalues and cor-

responding eigenvectors. Attempting to assign only part of the spectrum to given

eigenvalues may result in spillover, a phenomenon of destabilization of the sys-

tem where poles that are not intended to be changed are relocated to undesired

locations, which could increase the vibration level or even destabilize the system.

The pole placement with no spillover strategy is detailed in several relevant works

[7], [32], where some poles in the open and closed-loop system are common.
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In practice, only a few eigenvalues are undesirable and need to be reassigned,

which it is not a computationally expensive and time-consuming task. In this

dissertation, the partial pole placement for single and multiple inputs, with no

spillover, will be applied in the overall approach proposed.

2.1.2.3 Partial pole placement for single input systems

For better understanding about the partial pole placement method, let consider

the eigenvalue problems associated with the open-loop and closed-loop system,

with no time delay, respectively given by:

(λ2
kM+λkC+K)vk = 0, k = 1,2, ...,2n (2.14)

(µ2
kM+µkC+K)wk = B(G+µkF)wk, k = 1,2, ...,2n (2.15)

where { λk vk } is an eigenpair associated for open-loop eigenvalue λk and eigen-

vector vk and { µk wk } is an eigenpair associated for closed-loop eigenvalue λk

and eigenvector wk. Assuming that each closed-loop eigenvalue in {µk}p
k=1 is dis-

tinct from eigenvalues {λk}2n
k=1 of the open-loop system, the poles not modified

by the pole placement can be defined by:

µk = λk, k = p+1, p+2, ...,2n (2.16)

Substituting eq.(2.16) in eq.(2.15), the closed-loop control law is given by:

(λ2
kM+λkC+K)wk = B(G+λkF)wk, k = p+1, p+2, ...,2n (2.17)

where a non-trivial solution to eq.(2.17) is:

wk = vk, k = p+1, p+2, ...,2n (2.18)

and:

B(G+λkF)vk = 0, k = p+1, p+2, ...,2n (2.19)

based on eq.(2.14). Since B 6= 0 implies that:

vT
k (G+λkF)T = 0, k = p+1, p+2, ...,2n (2.20)
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The first p equations of eq.(2.15) give:

wk = (µ2
kM+µkC+K)−1B(G+µkF)wk, k = 1,2, ..., p. (2.21)

Note that the dynamic stiffness matrix in eq.(2.21) is invertible since that

eigenvalues in {µk}p
k=1 are distinct from eigenvalues in {λk}2n

k=1. Considering

that receptance matrix is H(s) = (Ms2 + Cs + K)−1 and and use the notation

rs = H(s)B, then eq.(2.21) takes the form:

wk = rµk(G+µkF)wk (2.22)

Since wk may be scaled arbitrarily, wk can be defined such that:

(G+µkF)wk = 1, k = 1,2, ..., p. (2.23)

From eq.(2.22):

wk = rk, k = 1,2, ..., p (2.24)

where, substituting eq.(2.24) in eq.(2.23):

rT
µk
(GT +µkFT ) = 1, k = 1,2, ..., p. (2.25)

Besides, considering the following notation:

P =

rT
µ1

µ1rT
µ1

...
...

rT
µp

µprT
µp

 , Q =

vT
p+1 µp+1vT

p+1
...

...
vT

2n µ2nvT
2n

 , (2.26)

where the 2n equations based on eq.(2.25) and eq.(2.20) can assume the form:[
P
Q

][
GT

FT

]
=

[
d
0

]
(2.27)

where d = (1 . . . 1)T ∈ Rp. Note that the vectors F and G are real vectors and

that the partial assignment of eigenvalues is achieved with no spillover, based on

only a small set of eigenvalues which are required to be changed, being a practical

engineering problem for pole placement concept [32].
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To validate the F and G matrices, obtained by the partial allocation method,

the determinant of the closed-loop characteristic equation can be calculated:

det[Mµ2
k +(C−BF)µk +(K−BG)] = 0 (2.28)

where the roots will correspond to the closed-loop poles, including those reas-

signed.

2.1.2.4 Partial pole placement for multiple input systems

Similar to the single input partial pole placement approach presented above,

based on the development described in [7], for the partial pole placement for m

multiple inputs, the matrices F and G can be found by solving the following linear

system:

[
Pk
Qk

][
GT

FT

]
=

[
αm
0

]
(2.29)

In this linear system, the matrix Pk, associated for the p poles to be reassigned,

for k = 1,2, ..., p is given by:

Pk =


wT

k 0 . . . 0 µkwT
k 0 . . . 0

0 wT
k . . . 0 0 µkwT

k . . . 0
...

...
...

...
...

...
...

...
0 0 . . . wT

k 0 0 . . . µkwT
k

 (2.30)

where the eigenvectors wk of the closed-loop is defined as a linear combination of

rµk, j = H(µk)B j, k = 1,2, . . . , p, j = 1,2, . . . ,m:

wk = αµk,1rµk,1 +αµk,2rµk,2 + . . .+αµk,mrµk,m (2.31)

and αµk, j, k = 1,2, . . . , p, j = 1,2, . . . ,m is a matrix that can be choosed for modal

constraints for wk, as described in [7].

The matrix Qk, for the remaining poles not modified by the pole placement

(invariant poles), can be defined by, for k = p+1, p+2, ...,2n:
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Qk =


vT

k 0 . . . 0 λkvT
k 0 . . . 0

0 vT
k . . . 0 0 λkvT

k . . . 0
...

...
...

...
...

...
...

...
0 0 . . . vT

k 0 0 . . . λkvT
k

 (2.32)

where it is possible to see that the F and G matrices may be determined from

measured receptances H(s) at the desired poles s = µk, k = 1,2, . . . , p, without the

need to know or evaluate the M,C,K matrices of the system.

2.2 Dead-zone nonlinearity considerations

The dead-zone function ρ(◦) : Rm → Rm is assumed to be a static and me-

moryless input nonlinearity, as illustrated in Fig. 2.2 for single input systems, that

can described by

u j(t) =


û j(t)−br, j, if û j(t)> br, j (or u j(t)> 0),
0, if −bl, j ≤ û j(t)≤ br, j (or u j(t) = 0),
û j(t)+bl, j, if û j(t)<−bl, j (or u j(t)< 0),

(2.33)

where û(t) = [û1(t) û2(t) ... ûm(t)]> is the control signal before dead zone, u(t) =
[u1(t) u2(t) ... um(t)]> is the dead-zone output signal, bl, j and br, j are the dead-

zone break points and u(t) = ρ(û(t)).

Consider the dead-zone characteristics shown in Fig.2.2, with a symmetrical

dead zone |br, j| = |bl, j| = δ j, for simplicity purposes and its slope constant and

equals to 1 (this is the typical case, without loss of generality, since the slope

different from 1 can be represented by a constant gain). The output waveform of

dead-zone nonlinearity with a sinusoidal input û j(t) = A jsin(ωt) is illustrated on

Fig.2.3, where the mathematical expression of u j(t) is as follows:

u j(t) =
{

0, 0≤ ωt < ϕ j
A jsin(ωt)−δ j, ϕ j ≤ ωt ≤ π/2 (2.34)

where ϕ j = arcsin( δ j
A j
). In Fig.2.3, note that the dead-zone break-point limits

directly influences on output signal amplitude, which decreases with δ j value, and
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Figure 2.2: Representation of the dead-zone nonlinearity - single-input case.

at the intersection points with the x axis, which is affected by ϕ j, due to nonlinear

characteristic present in dead zone.

For evaluating the existence of self-sustaining oscillations or limit cycles in

control loops for nonlinear systems, also to verify their stability and estimate their

amplitudes and frequency based on the frequency-domain approach, such as dead-

zone nonlinearity influence, the DF method is a useful operator that associates

the nonlinearity with a complex function that generalizes the frequency response

of transfer functions [49]–[53]. In order to be able to use describing functions

method, consider a control system like the one represented by the block diagram

of Fig.2.4, in which C(s) and H(s) denote the transfer functions of the controller

and the process, respectively, and N the nonlinearity, that is, an nonlinear operator

that transforms the û j(t) sign in the u j(t) sign.

Thus, the describing function of the nonlinear element is defined by the com-

plex ratio of the fundamental component of the nonlinear element by the sinu-

soidal input, given by:

N(A,ω) =
Me j(ωt+φ)

Ae jωt =
1
A
(b1 + ja1) (2.35)

where its mathematical proof is described in Appendix A.

For the dead-zone nonlinearity represented in Fig.2.2, because of the odd sym-
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Figure 2.3: Input and output signals under dead-zone nonlinearity influence.

Figure 2.4: Basic schema for describing functions method analysis

metry, a0 = 0 and a1 = 0. Then, b1 is given by:

b1 =
1
π

∫ 2π

0
û(t)sin(ωt)d(ωt)

=
4
π

∫
π/2

0
[Asin(ωt)−δ]sin(ωt)d(ωt)

=
2A
π
(
π

2
−arcsin(

δ

A
)− δ

A

√
1− (

δ

A
)2) (2.36)

Thus, the describing function N(A) for the dead zone is given by:

N(A) =
b1

A
= 1− 2

π
[arcsin(

δ

A
)+

δ

A

√
1− (

δ

A
)2] (2.37)

where the expression obtained above is a real function and frequency independent

(phase angle lag equals to zero), i.e, N(A,ω) = N(A). Also note that N(A) = 0

when A
δ
< 1 and increases as the effect of the dead zone diminishes as the ampli-

tude A is increased, as displayed in Fig.2.5.
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Figure 2.5: Graphical representation for dead-zone describing function.

2.2.1 Limit cycle prediction

Consider the system of Fig.2.4 and assume, for simplicity, that the reference

signal r is null, since want to analyze the oscillation inherent in the closed loop,

and that N(A,ω) is the DF of the nonlinearity N. The linear part is denoted by

G(s), which is defined by G(s) = C(s)H(s). According to the DF method, if the

system of Fig.2.4 sustains a limit cycle with the control signal u having an ampli-

tude A0 and a frequency ω0, then the pair (A0,ω0) is a solution of the Harmonic

Balance Equation [49], [50]:

G( jω) =− 1
N(A,ω)

(2.38)

Under general conditions, it is verified whether the harmonic balance equa-

tion admits solutions in (A,ω) to predict the existence of limit cycles and esti-

mate their amplitudes and frequencies. From the harmonic balance equation, a

graphical method is obtained to predict limit cycles in the system when the de-

scribing function of the nonlinearity in question depends only on the amplitude

(N(A,ω) =N(A)), which is also the case for several nonlinearities, including dead

zone, Coloumb friction, among others [50], for the most common case where the

oddity property is considered. For this purpose, this analysis considers the Nyquist

plot of both the frequency response function G( jω), varying ω, and the negative

inverse describing function −1/N(A), varying A, in the complex plane. If these

curves intersect at some point z0, then the system admits a limit cycle, and the

values of the parameters of the curves A0 and ω0 for which the intersection are so-

lutions of that equation and, therefore, correspond to the frequency and amplitude
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of the limit cycle found. For dead-zone describing function, note that its plot lies

on the real axis and tends to point (−1,0) in Nyquist plot when A→ ∞.

For receptance-based systems, with no time delay, considering the system in

Fig.2.4, in comparison with closed-loop receptance given by Eq.(2.6), which is

possible to define that the harmonic balance equation can be described by:

− (G+ jωF)H( jω)B =− 1
N(A,ω)

(2.39)

where, if there is an intersection between the open-loop transfer function based on

receptance and the negative reciprocal expression for nonlinearity, the procedure

gives a prediction of the existence of limit cycles, i.e., when then the pair (A0,ω0)

will be a solution of the Harmonic Balance Equation.

At the same method, the limit cycles can be stable or unstable. To determine

the stability of a limit cycle, is used, as described in [49], [50] and references

therein, the Nyquist criterion for stability analysis, where the closed-loop system

is stable if the open-loop frequency response in the complex plane circulates the

point (−1,0) in a positive direction for frequency changes from −∞ to +∞ as

many times as the number of open-loop poles lies in the right half of the plane

jω. In other words, the stability condition is respected if the number of turns

in the positive direction coincides with the number of open-loop unstable poles.

Otherwise, the limit cycle is unstable.

2.3 Continuous-time filtered Smith predictor for re-
ceptance systems

In this section, the filtered Smith predictor for second-order receptance-based

systems is presented, based on the theory developed in [5]. For presentation sim-

plicity purpose and based on Eq.(2.7) and Eq.(2.8), the nominal prediction, con-

sidering that the system is initially relaxed, i.e, x(0) = ẋ(0) = 0, and the external

disturbance d(t) = 0, can be given by:

X̂(s) = H(s)BU(s) (2.40)

where W(s) = 0 and X̂(s) can be given by 2.40, the nominal prediction of X(s),
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since x(t) could be expressed by:

x(t) = x̂(t− τ)+w(t) (2.41)

Then, the compensated prediction will be given by:

Xp(s) = X̂(s)+ [X(s)− X̂(s)e−sτ] (2.42)

where X̂(s) is defined in Eq.(2.40) and E(s) = X̂(s) + [X(s)− X̂(s)e−sτ] is de-

fined as the prediction error used for correction purposes and can be used for an

estimator for w(t). Two important properties can be defined for Smith predictor

in second-order systems based on receptance representation: (i) limt→∞ xp(t) =

limt→∞ x(t), due to e−sτ|s=0 = 1, confirming exact convergence in the presence

of constant disturbances; (ii) Considering that w(t) = 0, then X(s) = X̂(s)e−sτ,

that implies in xp(t) = x̂(t) = x(t + τ), ensuring exact prediction in the absence

of disturbances, where xp(t) is considered as a future measurement x(t + τ) so

the delay influence can be removed from the nominal closed-loop representation.

Then, control law is defined for a system without time delay controlling a system

with delay.

Based on nominal prediction for Smith predictor given by Eq.(2.40), if the

system is not Bounded-Input Bounded-Output (BIBO) stable, X̂(s) can have a

divergent behavior even if the input is bounded. Then, the Smith predictor is not

internally stable if the receptance has any pole which is not strictly inside the

left-half plane. This is a relevant consideration, because some applications have

poles over the imaginary axis, such as, for example, a friction-induced mechanical

systems [30] and a vibration absorber of a machine [42], which including active

vibration for receptance-based systems.

2.3.1 Receptance-based filtered Smith predictor

Now, consider the following version for the receptance matrix H(s) for second-

order systems, given by:

H∆(s) = [Ms2 +(δI+C)s+K]−1 (2.43)

where δ > 0 is a positive and arbitrarily small scalar, such as δ� ||C||, and I
the identity matrix. The objective is, with the insertion of δ and considering that
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Figure 2.6: Schematic representation of the closed-loop system with continuous-
time FSP.

C � 0, make the adjusted term (δI+C) � 0 so that the poles of H∆(s) lie at the

left half-plane and out of imaginary axis. The numerical uncertainty δ is defined

in such a way as to provide a small variation in the original matrix of the defined

system by Eq.(2.1) and, within the context presented, allows the application of

filtered Smith’s predictor for marginally stable systems, thus guaranteeing BIBO

stability. In this way, the new nominal prediction is defined as:

X̂∆(s) = H∆(s)BU(s) (2.44)

where the perturbed version of H(s), based on matrix lemma, can be rewritten by:

H∆(s) = [(Ms2+(δI+C)s+K)−1] = H(s)− sδH(s)[I+ sδH(s)]−1H(s) (2.45)

and only the structural, open-loop receptance is needed in the modified Smith

Predictor. That is, there is no need to know the system matrices M, C, K. Then,

the filtered Smith predictor is defined by:

X f (s) = X̂∆(s)+Φ(s)[X(s)− X̂∆(s)e−sτ] (2.46)

where Φ(s) = φ(s)I, φ(s) is a scalar stable filter given by:
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φ(s) =
1+a1s+a2s2 + . . .+aksk

(τ f s+1)k+1 (2.47)

where: (i) τ f > 0 is a free tuning parameter; (ii) al , l = 1, . . . ,k are defined in order

to guarantee [1−φ(s)e−sτ]|s= jωi = 0 and (iii) i = 1, . . . ,v, v is the total number of

undesirable resonance peaks. This filter has two relevant properties: (i) attenuat-

ing the undesired difference between X(s) and X̂∆(s) due to modeling errors and

(ii) filtering resonant frequencies carried into control signal U(s). The filter φ(s)

designing rules are described in Appendix B.

The prediction X f (s) can be alternatively given by:

X f (s) = H∆(s)B[1−φ(s)e−sτ]IU(s)+Φ(s)X(s) (2.48)

where this result implies that:(i)φ(s) can be defined in order to [1−φ(s)e−sτ]|s= jωi

= 0, ωi are the frequencies related for undamped or poorly undamped undesirable

poles; (ii) The τ f parameter can be defined for dealing with the trade-off between

disturbance rejection performance and robustness.

Thus, considering the proposed predictor, the control law U(s), illustrated in

Fig.(2.6), can be given by:

U(s) = (sF+G)X f (s) = (sF+G)
{
[I− e−sτ

Φ(s)]X̂∆(s)+Φ(s)X(s)
}

(2.49)

where U(s) is used for obtaining the prediction X f (s) in a causal implementation

loop.

Then, the filtered Smith predictor approach has the following benefits [5], if

compared with related strategies [32], [57], [61] for receptance-based second-

order systems with input delay: (i) can be used to stabilize marginally stable sys-

tems with long input delays; (ii) the prediction is obtained from the receptance

matrix; (iii) the strategy can be applied to attenuate the undesired effect of poorly

damped poles; (iv) the delay compensation does not require the augmented des-

cription.

Thus, the ideal closed-loop dynamics, without time delay (τ = 0) is defined

by:

Mẍ(t)+(C−BF)ẋ(t)+(K−BG)x(t) = 0 (2.50)
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where the proposed prediction based control provides an equivalent nominal clo-

sed-loop approach, when compared with the ideal case without delay and distur-

bances.

2.4 Discrete-time filtered Smith predictor for recep-
tance systems

On the FSP prediction for continuous-time, given by X̂(s) = H(s)BU(s), the

internal stability cannot be guaranteed by a standard continuous-time structure.

Based on the results detailed in [6], the discrete-time FSP structure for receptance-

based systems will be presented, considering the delay at the input of system.

2.4.1 Discrete-time prediction based on FSP

The nominal prediction for the discrete-time version is given by1:

X(z) = H(z)BU(z) (2.51)

where2

H(z) =
z−1

z
Z
{

H(s)
s

}
(2.52)

Considering that Ts is defined such that the discrete-time delay τ = `Ts, `∈N∗.
Then, the discrete-time temporal evolution of system, with null conditions and

d(t) = 0, can be defined as:

Z{x(t)|t=nTs}= z−`H(z)BU(z) (2.53)

Based on [5], the discrete-time filtered Smith prediction is defined by:

1The unilateral Z-Transform is given by X(z) = ∑
∞
n=0 x(nTs)z−n, where: (i) Ts is the sampling

interval and (ii) t = nTs, for t ∈ (nTs,(n+ 1)Ts], is the Zero-Order Hold for discrete-time imple-
mentation.

2For simplicity purposes, the Z−Transform of a Laplace representation is defined by
Z{L−1{X(s)|t=nT}.
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X̂(z) = X(z)+Φ(z)[X(z)− z−`X(z)] (2.54)

where the filter Φ(z) = φ(z)I and φ(z) is a scalar transfer function with unitary

gain, having the following objectives: (i) provides predictor stability which is

a requirement for aiming internal stability; (ii) deal with the trade-off between

robustness and disturbance rejection performance. It is relevant to point out that

X̂(z) prediction has an unstable response due to unstable open-loop poles. They

can be found due to asymmetrical receptance-based representation. Then, the

prediction can be alternatively given by:

X̂(z) = [1− z−`φ(z)]H(z)BU(z)+Φ(z)X(z) (2.55)

To deal with unstable open-loop poles, consider a receptance matrix H(z) in a

factorized representation:

H(z) =
1

β(z)
S(z) (2.56)

where β(z) is a polynomial expression whose roots are the unstable modes of H(z)

and S(z) will contain only stable poles. Then, for aiming internal stability, a filter

φ(z) can be designed such that the zeros of 1−z−`φ(z) are equal to the roots of β(z)

(unstable poles of H(z)). Thus, φ(z) is defined such that [1−z−`φ(z)] = β(z)φs(z),

where φs(z) is given by:

φs(z) =
1− z−`φ(z)

β(z)
(2.57)

where the φs(z) design rules are detailed on Appendix B. Thus, the stable filtered

prediction is defined as follows:

X̂(z) = φs(z)S(z)BU(z)+φ(z)X(z) (2.58)

Note that, if Eq.(2.55) is used, bounded inputs could cause a divergent be-

havior at the output of the system. Then, this consequence can be avoided using

Eq.(2.58), based on φs(z).
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Figure 2.7: Schematic representation of the closed-loop system with discrete-time
FSP.

2.4.2 State-feedback control law

Now, consider the standard state-feedback control law given by Eq.(2.3), with

time delay at the input of the receptance-based system. The delay induces an unde-

sirable effect, as seen in the closed-loop control law described by Eq.(2.4). Then,

based on discrete-time FSP for avoiding this undesirable effect, the sampled-data

control signal is described by:

u(t) = F ˆ̇x(nTs)+Gx̂(nTs), (2.59)

where x̂(nTs) = Z−1{X̂(z)} and x̂d(nTs) = ˆ̇x(nTs) = Z−1{X̂d(z)}. The prediction

X̂d , relative to velocity prediction, is given by:

X̂d(z) = [1− z−`φ(z)]Hd(z)BU(z)+Φ(z)Xd(z) (2.60)

where Hd(z) = z−1
z Z{H(s)}.

Then, substituting the Eq.(2.55) and Eq.(2.60) in Eq.(2.59), the state-feedback

29



closed-loop law, illustrated on the Fig.(2.7), can be described as follows:

U(z) = F{[I− z−l
Φ(z)]HdBU(z)+Φ(z)Xd(z)} (2.61)

+G{[I− z−l
Φ(z)]HBU(z)+Φ(z)X(z)}

Note that, similar to the control law for continuous-time FSP, U(z) is used for

computing X̂(z) and X̂d(z) in a causal implementation loop. Besides, the control

law U(z), considering that the delay is mitigated for prediction filter Φ(z), can be

rewritten by:

U(z) = [I−GH(z)B−FHd(z)B]−1[FΦ(z)Xd(z)+GΦ(z)X(z)] (2.62)

where the transfer matrix from the each state (displacement and velocity) has a

delay free characteristic equation is given by [6]:

det([I−GH(z)B−FHd(z)B]) = 0 (2.63)

2.4.3 Considerations about pole placement problem

The full or partial pole placement for receptance-based systems used for F and

G matrices without input delay, as discussed in this chapter by methods described

in [3], [7], can be solved similarly for the continuous-time domain. In this case,

considering a single-input system, the reassign of p eigenvalues (poles) of a full

set of 2n open-loop poles {eλ1Ts, . . . ,eλ2nTs}, which implies in a set of p linear

equations: [
Hd(eλkTs)B
H(eλkTs)B

]T [F
G

]
= 1 k = 1, . . . , p. (2.64)

For the no spillover property, based on the remaining 2n− p poles, the follow-

ing linear equations can be solved:

[
yk

λkyk

]T [F
G

]
= 0 k = p+1, . . . ,2n. (2.65)

where the yk is the eigenvector associated with the eigenvalue λk. These same

considerations are applicable for partial pole placement for multiple input systems

[7].
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Chapter 3

Filtered Smith predictor with
dead-zone compensation

In general, a state feedback control law is considered for second-order linear

systems. The desired theoretical control law is typically defined by

v(t) = Fẋ(t)+Gx(t), (3.1)

where F ∈ Rmxn and G ∈ Rmxn are the well-known feedback gain matrices de-

signed to provide a specific closed-loop performance. The control challenge

comes from the fact that v(t) is defined from the state feedback control law, but

u(t−τ) is the effective manipulated input in Eq. (2.2). The idea of the dead-zone

compensation is to provide a modified control action such that u(t) = v(t). The

filtered Smith predictor is used to design F and G based on the model without

delay.

A typical dead-zone compensation strategy is used in related works [15], [20]–

[22], where Γ̃(◦) : Rm → Rm represents the dead-zone inverse compensation

function, i.e. v(t) = [v1(t) v2(t) ... vm(t)]>, û(t) = Γ̃(v(t)), ûi(t) = γ̃i(vi(t)),

i = 1,2, ...,m . This compensation can be represented by

γ̃i(vi(t)) =


vi(t)+br,i, if vi(t)> 0,
0, if vi(t) = 0,
vi(t)−bl,i, if vi(t)< 0.

(3.2)

Hence, as u(t) = ρ(û(t)), if û(t) = γ̃(v(t)), then u(t) = v(t) such that the virtual

desired control before the dead-zone compensation correspond to the effective

control after the dead zone. In other words, ρ(Γ̃(v(t))) = v(t).

31



In practice, this solution provides a chattering effect when vi(t) is around the

origin. Then, an approximated approach can be defined as depicted in Fig. 3.1

to mitigate the chattering effect. The approximated dead-zone compensation is

simply given by

γi(vi(t)) = vi(t)+ sati(βvi(t)), (3.3)

where β� 1, sati(◦) defines a saturation nonlinearity, sat(◦) : Rm → Rm is the

generalized saturation version for the case with multiple inputs, and Γ(v(t)) =
v(t)+ sat(v(t)). Each saturation function is defined as

sati(βvi(t)) =


br,i, if βvi(t)> br,i,
βvi(t), if −bl,i ≤ βvi(t)≤ br,i,
−bl,i, if βvi(t)<−bl,i.

(3.4)

Notice that the difference between Γ(v(t)) and Γ̃(v(t)) is negligible for a

sufficient high value of the free parameter β because γi(v(t))− γ̃i(v(t)) = 0 ei-

ther if βvi(t) > br,i or if βvi(t) < −bl,i. Moreover, γi(v(t))− γ̃i(v(t)) = εi(t) is

bounded by |εi(t)| < |βvi(t)− br,i| if br,i > βvi(t) > 0 and |εi(t)| < |bl,i−βvi(t)|
if 0 > βvi(t) > −bl,i. In summary, the exact condition (γi(v(t))− γ̃i(v(t)) = 0)

is easily achieved by increasing β. Then, β is used to deal with the compromise

between chattering mitigation and exact dead-zone compensation condition.

Figure 3.1: Schematic description of the dead-zone inverse compensation strategy
based on saturation nonlinearity.

The proposed dead-time compensation strategy can be combined with the fil-

tered Smith predictor to jointly deal with delay and dead zone. A receptance-based

filtered Smith predictor with dead-zone compensation is illustrated in Fig. 3.2. In

this work, similarly to the approach presented in [5], a perturbed open-loop recep-

tance transfer matrix H∆(s) is used in the presence of undamped poles. Moreover,

32



Figure 3.2: Schematic representation of the FSP approach with dead zone at input
of the system.

for the open-loop unstable case, the approach given in [6] can be used to im-

plementation of a discrete-time filtered Smith predictor. In both cases, internal

stability is assured to the prediction.

The external signal f(t) can be redefined as follows to consider the effect of

the approximated dead-zone compensation

f(t) = Bρ(Γ(v(t− τ)))+d(t). (3.5)

Alternatively, the approximated dead-zone compensation can be described by

f(t) = B[v(t− τ)+ ε(t− τ)]+d(t), (3.6)

where ε(t− τ) is a bounded disturbance that comes from the approximated dead-

time compensation with chattering mitigation. Due to the fact that ε(t− τ) repre-

sent a bounded external disturbance from control perspective, then q(t) = Bε(t−
τ) is defined in order to simplify the BIBO stability analysis as follows

f(t) = Bv(t− τ)+q(t)+d(t), (3.7)
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Figure 3.3: Equivalent schematic representation of the linear delayed system with
bounded disturbance and FSP compensation.

where q(t) = Bε(t− τ) due to the definition of the approximated dead-zone com-

pensation. This result is important once the approximated nonlinear compensation

can be represented by an equivalent linear system with bounded disturbance, as

illustrated in Fig. 3.3, where the virtual control v(t) can be depicted as a typi-

cal linear control u(t) due to the bounded disturbance description. In a similar

way, based on the discrete-time FSP approach for receptance-based asymmetric

systems, on Fig. 3.4 is depicted the equivalent schematic of the linear delayed

system with bounded disturbance.

Remark 1. As discussed in [5], as long the receptance-based filtered Smith Pre-

dictor is designed with a stable H∆(s) receptance representative of the system, in-

ternal stability is then guaranteed. Then, the bounded disturbance on the system,

including d(t), the exogenous perturbations, and q(t), a bounded disturbance due

to the non-chattering approximation of the inverse for dead zone, and deviations

from the estimated to the actual dead-zone limits, lead to bounded outputs as the

effect.
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Figure 3.4: Equivalent schematic representation of the linear delayed system with
bounded disturbance and discrete-time FSP compensation.

Notice that the unknown dead-zone effect may be described as a bounded

disturbance as the difference between the desired control signal and the effective

control due to the dead-zone input is limited.
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Chapter 4

Receptance-based discrete-time
observer for adaptive compensation

For presentation purposes, the receptance-based second-order model without

delay can be alternatively described by:

P(s) =
[

H(s)B
sH(s)B

]
. (4.1)

The following augmented state description is also considered

ξξξ(t) =
[

x(t)
ẋ(t)

]
, (4.2)

where ξ(t) is augmented description based on the displacement x(t) and velocity

ẋ(t). Now, consider a continuous-time minimal state-space realization of P(s),
with state vector given by µµµ(t) ∈ R2n such that the following description holds

{
µ̇µµ(t) = Asµµµ(t)+Bsu(t− τ)
ξξξ(t) = Csµµµ(t)+Dsu(t− τ)

(4.3)

where As ∈ R2n×2n, Bs ∈ R2n×m, Cs ∈ R2n×2n and Ds ∈ R2n×m.

For the purpose of defining a transformed state-space realization based on the

vector given by ξ(t) = [x(t)T ẋ(t)T ]T , a similarity transformation will be em-

ployed such that ξ(t) is the effective state vector. Therefore, the following equiva-

lent input-output representation is considered

µµµ(t) = Tlξξξ(t), (4.4)
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where Tl ∈ R2n×2n represents the similarity transformation. In this problem, this

matrix can be obtained as follows

Tl = C−1
s , (4.5)

because Ds = 0, because P(s) is a strictly proper transfer matrix. Then, the alter-

native representation is given by:

At = T−1
l AsTl, Bt = T−1

l Bs, Ct = CsTl = I. (4.6)

Consequently, the continuous-time state-space model can be defined as fol-

lows:

ξ̇ξξ(t) = Atξξξ(t)+Btu(t− τ). (4.7)

The adaptive dead-zone compensation strategy is based on a discrete-time

control with a Zero-Order hold actuation with a sampling period Ts. From now

on, the discrete virtual control is defined by v(t) = Fẋ(kTs) +Gx(kTs) for t ∈
(kTs,(k+1)Ts], where v(kTs) = v[k]. Then, the discrete-time model is given by

ξξξ[k+1] = Adξξξ[k]+Bdu[k−d], (4.8)

where ξ[k] = ξ(kTs), u[k] = u(kTs), Ad ∈ R2n×2n, Bd ∈ R2n×m are obtained from

the zero-order hold discretization of the continuous-time equation, and delay in

discrete-time d ∈ N∗ is assumed to be defined such that τ = dTs. Hence, the

discrete-time matrices are given by

Ad = eAtTs, Bd =

(∫ Ts

0
eAtτdτ

)
Bt . (4.9)

It is assumed that Bt is full column rank, i.e., the actuation effects are not redun-

dant.

The discrete-time equation can be rewritten by

ξξξ[k+1] = Adξξξ[k]+Bdv[k−d]+Bd(u[k−d]−v[k−d]), (4.10)
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where: (i) v[k] is the discrete-time desired control signal; (ii) u[k] = u(kTs) is the

sampled signal of the control action subject to the dead zone, (iii) and u[k−d]−
v[k−d] represents the difference between a desired virtual control and the effec-

tive control subject to the dead zone. In the absence of disturbances or modeling

errors, ωωω[k−d−1] = u[k−d−1]−v[k−d−1] can be computed as follows

ωωω[k−d−1] = B+
d (ξξξ[k]−Adξξξ[k−1]+Bdv[k−d−1]) (4.11)

where B+
d ∈R

m×2n is the Moore-Penrose or pseudoinverse of the influence matrix.

Notice that in the absence of disturbances and modeling errors, as Bd is full

column rank, then the following relationship holds

ωωω[k−d−1] = B+
d (ξξξ[k]−Adξξξ[k−1])+v[k−d−1]

= u[k−d−1]−v[k−d−1]. (4.12)

This observer is useful because br,i and bl,i, i = 1,2, ...,m may not be exactly

known. Fortunately, based on ωωω[k− d− 1], the compensation parameters can be

adapted to track the correct dead-zone parameters. Notice that if the proposed

dead-zone compensation strategy is used in the undisturbed nominal case, then

ωωω[k−d−1] = u[k−d−1]−v[k−d−1]

= ρ(Γ(v[k−d−1]))−v[k−d−1]. (4.13)

4.1 Dead-zone adaptation mechanism

The observed signal is defined by the following vector ωωω[k−d−1] = [ω1[k−
d− 1] ... ωm[k− d− 1]]>. However, either the information of br,i or bl,i can be

provided by ωi[k−d−1], depending on the value of ui[k−d−1]. If ui[k−d−1]>

0, then ωi[k−d−1] depends on br,i, while ui[k−d−1]< 0 is such that ωi[k−d−
1] depends on bl,i. The adaptive estimation of b̂r,i[k] and b̂l,i[k] are defined from

a discrete-time integration of b̂r,i[0] and b̂l,i[0] based on Euler’s approximation

method. Thus, the adaptive mechanism can be defined by

b̂r,i[k] = b̂r,i[k−1]−Kr,iTsωi[k−d−1], if vi[k−d−1]> 0, (4.14)

b̂r,i[k] = b̂r,i[k−1], if vi[k−d−1]≤ 0, (4.15)
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Figure 4.1: Receptance-based discrete adaptive estimator scheme.

in which Kr,i is a gain parameter defined to the computation b̂r,i[k] if vi[k−d−1]>

0. The estimation of b̂l,i[k] is given by:

b̂l,i[k] = b̂l,i[k−1]+Kl,iTsωi[k−d−1], if vi[k−d−1]< 0, (4.16)

b̂l,i[k] = b̂l,i[k−1], if vi[k−d−1]≥ 0. (4.17)

where Kl,i is also design parameter. The proposed adaptation loop is presented

in Fig. 4.1 where θr,i[k] = b̂r,i[k], and θl,i[k] = −b̂l,i[k]. Notice that in the nom-

inal case without disturbances, if b̂l,i[k] = bl,i, b̂r,i[k] = br,i, and |βvi(k− d)| >
max(|bl,i|, |br,i|), then ωi[k−d−1] = 0. The main objective is to adapt b̂l,i[k] and

b̂r,i[k] with an integration loop in order that the integration loop converges if and

only of b̂l,i[k]→ bl,i and b̂r,i[k]→ br,i.

Note that, in the proposed scheme represented in Fig. 4.1, there are two ine-

quality blocks that perform the comparison between the virtual control effort sig-

nal vi[k− d− 1] and the estimation error ωi[k− d− 1], to update the b̂r,i[k] and

b̂l,i[k] signals. For example, for the update of b̂r,i[k], whenever the virtual con-

trol effort vi[k−d−1] is greater than zero, this block performs the update of the
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θr,i[k] signal (in this situation, the comparison block will activate the true state).

Otherwise, the b̂r,i[k] signal remains with the same value calculated in the previous

instant (the comparison block will have a false state). The similar conception is

applied to the update of b̂l,i[k]. Besides, the sati(βvi(t)) block in dead-zone inverse

compensation illustrated in Fig. 4.1 is updated by the b̂r,i[k] and b̂l,i[k], which in

turn is based in the adaptive estimation loop.

In this problem, if b̂l,i[k], b̂r,i[k] are bounded signals, then ω[k] is a bounded

disturbance, as previously discussed, such that the BIBO stability is respected.

The sufficient convergence analysis for b̂l,i[k] and b̂r,i[k] at the effective adaptation

instants is presented in Appendix C for simplicity.

It is important to highlight that the UIO and the FSP can be designed in a

modular way, that is, the design for each approach can be implemented individu-

ally, each one based on the specifications of time delay and dead zone to be miti-

gated.

Remark 2. The overall control approach is defined such that any receptance-

based design strategy for delay-free models can be applied for second-order sys-

tems with input delay and an uncertain input dead zone.

4.2 Numerical examples

In this section, the simulation case studies will be presented to illustrate the

benefits of the proposed strategy for deal with dead zone and time delay. For

that, the Simulinkr and Matlabr environments were used with the purpose of

obtaining the results.

4.2.1 Test case I: a marginally stable vibrating system

This test case is based on the example presented by [32] and discussed in [5]

for a receptance-based FSP approach. The system matrices are the

M =

[
1 0
0 1

]
, C =

[
1 −1
−1 1

]
, K =

[
3 −2
−2 3

]
and a influence matrix B = [1 0]T . In this problem, open-loop eigenpairs are

λ1,2 =±i and λ3,4 =−1±2i. The method presented on [32] is applied to reassign
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the first eigenpair to the position µ1,2 =−1± i (inside of left-half complex plan),

while the second eigenpair is not modified. The original gains, defined for the

system without delay, designed in [31] by partial pole placement are given by

F1 = [−2 − 2] and G1 = [−1 − 1]. The time delay is setting as τ = 5s and

the feedback matrices designed to this time delay using the approach of [32] are

F2 = [−0.0103 − 0.0103] and G2 = [−0.0213 − 0.0213]. The filter applied

in FSP receptance-based method described on [5] was implemented for τ f = 0.5

(free tuning filter parameter, based on [5]) and considering the resonant frequency

ωr = 1rad/s, resulting in

φ(s) =
−0.3894s2 +0.1503s+1

(0.5s+1)3

where filter φ(s) designing can be found in the Appendix B, and δ= 10−5 to obtain

a perturbed open-loop receptance transfer matrix H∆(s) [5] and allow the appli-

cation of the BIBO stability for open-loop stable marginally systems. The initial

conditions for displacement and velocity are, respectively, x(0) = [3 1]T m and

ẋ(0) = [0.2 0.1]T m/s. The Simulinkr default ode45 integration method ordinary

differential equation (ODE) solver was chosen for simulation model. Through-

out the test case I, for discrete UIO adaptive scheme, an asymmetrical dead zone

is considered with the actual dead-zone limits br,1 = +0.9 and bl,1 = −0.75; the

initial value of estimated dead-zone limits for adaptive algorithms was defined

as +1.4 and −1.4 to br,1 and bl,1, respectively. The sample time was defined as

Ts = 0.1s (value smaller than the Nyquist sampling time criteria, based on fastest

dynamics of the system); β = 106 (β� 1 to mitigate chattering); and the adaptive

constant gains were Kl,1 = Kr,1 = 0.15. For UIO discrete observer approach, the

discrete-system augmented state observer matrices Ad , Bd and B+
d obtained are

given by:

Ad =


0.9858 0.0092 0.0949 0.0050
0.0092 0.9858 0.0050 0.0949
−0.2746 0.1748 0.8960 0.0990
0.1748 −0.2746 0.0990 0.8960

 , Bd =


0.0048

0.00016
0.0949
0.0050

 ,
B+

d =
[

0.5339 0.0184 10.4861 0.5501
]

For the sake of comparison and to illustrate the relevance of the proposed ap-

proach, an adaptive scheme proposed by [15] for an unknown dead zone also will
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Figure 4.2: Displacement and velocity responses in the test case I with dead-zone
nonlinearity and no time delay.

Figure 4.3: Displacement responses in test case I with dead zone and no time
delay: (A) UIO approach dead-zone compensation. (B) Adaptive scheme by [15]
for dead-zone compensation.

be simulated. This approach takes the v(t) and the modified or known effective

control signal u(t) for estimating the unknown dead-zone parameters, with inte-

gral action update law on the adaptive scheme. In the approach proposed in this

work, the UIO adaptive scheme is based on state vector ξ(t) and v(t) control sig-

nal, both accessible for measuring, which can be considered an advantage in terms

of practical applications.

Thus, the dead-zone effect on displacement and velocity signals with no time

delay is depicted in Fig.4.2. A bounded disturbance is observed in steady-state and

42



Figure 4.4: Displacement and velocity responses in test case I with no time-delay
compensation.

in Fig.4.3 the adaptive methods - the proposed and that in [15] - are applied to the

system with an asymmetrical dead zone; both the schemes mitigate the dead-zone

effect, illustrating the effectiveness of discrete-time UIO adaptive approach.

The time-domain performances for displacement and velocity under time-

delay τ = 5s influence, without dead zone, are displayed in Fig.4.4, where it veri-

fies an unstable behavior due to delay presence. Thus, for dealing with time-delay

compensation, the F2 and G2 matrices were applied with a dead-zone adaptive

scheme [15], where the displacement response is displayed in Fig.4.5(A), which

is possible to verify that the approach [32] degrades the time-domain performance,

in comparison with displacement time response in Fig.4.5(B), which the FSP with

dead-zone adaptive scheme [15] is applied for br,1 and bl,1 defined above. As ex-

pected, the FSP mitigates the time-delay negative effect. These results are very

important to show the main advantage of the proposed approach as the controller

gains of the main control law are not delay-dependent. In contrast to [32], for in-

stance, the nominal closed-loop poles are not modified. The main consequence of

the new design required in related works is the closed-loop response degradation

due to the new pole placement.

In Fig.4.6 and Fig.4.7, the displacement and velocity with FSP and discrete-

time UIO adaptive scheme are depicted, respectively, for several dead-zone break-

points initial values set, br,1 = {0,+1.4,+2} and bl,1 = {0,−1.4,−2}. Note that

the steady-state responses are not affected by the choice of the different dead-
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Figure 4.5: Displacement responses in test case I: (A) F2 and G2 matrices de-
signed for time delay τ = 5s and adaptive scheme [15]. (B) FSP and adaptive
scheme [15].

zone initial guess limits, considering the approach proposed, including time-delay

presence, which is mitigated by FSP.

Figure 4.6: Displacement responses x1 and x2 for Test case I with the FSP and UIO
adaptive dead-zone compensation approach for several dead-zone initial values.

It is important to note that, as previously discussed in [5], the FSP was effective

to keep closed-loop stability as expected from the system without delay. Also, it is

possible to verify that the dead-zone effect is mitigated without affecting closed-
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Figure 4.7: Velocity responses v1 and v2 for Test case I with the FSP and UIO
adaptive dead-zone compensation approach for several dead-zone initial values.

loop stability as seen expected, as a consequence of accurate estimation related

to asymmetrical dead-zone break-points br,1 and bl,1 displayed in Fig.4.8, that

illustrate dead-zone estimations for several initial dead-zone values.

Figure 4.8: Dead-zone estimation parameters under UIO approach for several
dead-zone initial values in Test case I.

The convergence related to FSP and UIO approaches can also be seen through

discretized estimation error signal ωi[k], presented in Fig. 4.9. Note that there is
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Figure 4.9: Estimation signal for discrete observer for the system of Test case I.

a switching behavior along the signal ωi[k] until the dead-zone influence is not

mitigated, which directly implies on ωi[k] → 0 if that disturbance is mitigated

from state vector ξ(t).

In Fig.4.10 is presented a comparison between closed-loop control effort sig-

nals v(t) and u(t), considering the dead-zone presence and the complete approach

(FSP and discrete observer UIO dead-zone compensation), where it verifies that

[u(k−d−1)−v(k−d−1)]→ 0 when dead-zone break-points b̂r,1[k]→ br,1 and

b̂l,1[k]→ bl,1. As also explained in [5], [6], the transient performance of the time-

domain responses (displacement, velocity, control effort, etc.) can be adjusted by

the τ f free parameter, handling the trade-off between this transient and steady-

state attenuation. The smaller the value of τ f , the greater will be the amplitude of

the time responses on transient performance and vice versa.

To evaluate the robustness of the proposed approach, consider a modified ver-

sion to M, C and K presented in [2.1], given by, respectively, Mr = M±αMM,

Cr = C±αCC, Kr = K±αKK, αM, αC, αK ∈ R and |αM|, |αC|, |αK| � 1. Be-

sides, also considering a modified time delay τr = τ±αrτ, αr ∈ R and |αr| � 1.

These proposed modifications will represent the modeling error related to M, C,

K, and τ, different from those used for both the UIO and predictor design. In

Fig.4.11, is depicted the time-domain response to displacement and velocity, con-

sidering αM = αC = αK = αr = +0.05, illustrating that the mechanism approach

(despite being designed for the case without modeling error) has a robustness mar-

gin to allow the convergence of states to the origin even with modeling error.
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Figure 4.10: Comparison of control effort for the system in Test case I: (A)
Closed-loop with dead-zone influence. (B) Closed-loop system with FSP and
UIO discrete observer dead-zone compensation approach.

Figure 4.11: Displacement and velocity responses in the test case I with modeling
error for receptance matrices and time delay.

Besides, to better illustrate the modeling error influence over the approach,

in Fig.4.12, Fig.4.13 ,Fig.4.14 and Fig.4.15, are displayed the displacement time-

responses considering the modeling error for a symmetric range of values, respec-

tively: (i) the matrix M, for αM = −0.20 and αM = +0.20; (ii) the matrix C, for

limit values αC =−0.25 and αC =+0.25; (ii) the matrix K, for αK =−0.25 and

αK = +0.25; (iv) τ, for αr = −0.08 and αr = +0.08. The main purpose is to

evaluate the modeling error contribution for each variable from receptance ma-
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Figure 4.12: Displacement responses in the test case I with modeling error for M
matrix: (A) For αM =−0.20; (B) For αM =+0.20.

Figure 4.13: Displacement responses in the test case I with modeling error for C
matrix: (A) For αC =−0.25; (B) For αC =+0.25.

trix (M, C and K) and relative to the time delay, also considering that these limit

values described above can represent estimating errors related to the real systems

under study, from a practical point of view. Note that, similar to the results in

Fig.4.11, the approach presents a good margin of robustness, allowing significant

variations in the M, C, K matrices and in time delay τ. It is important to empha-

size that values outside the analyzed limit values for αM, αC, αK and αr can lead

to a greater transient than the depicted, for example, in Fig.4.12(A) and Fig.4.15,

as expected.

To verify, via simulation, the effect of additive noise on the proposed approach,

it was considered the use of the white noise block, in the Simulinkr environment,
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Figure 4.14: Displacement responses in the test case I with modeling error for K
matrix: (A) For αK =−0.25; (B) For αK =+0.25.

Figure 4.15: Displacement responses in the test case I with modeling error for
time delay τ: (A) For αr =−0.08; (B) For αr =+0.08.

associated individually for each displacement and velocity signals measured at

output of the system. The additive noise was configured as follows: (i) noise

power on 10−3W , chosen in such as to allow a quantitative evaluation of the in-

fluence of noise on the effective measurement of state vector, in closed-loop ana-

lysis; (ii) sample time equals 0.1s (value smaller than the Nyquist sampling time

criteria, based on fastest dynamics of the system); (iii) the starting seed for the

random number generator in this block was defined with distinct seed parameters

values for each displacement and velocity signals, for representation of sensors

with uncorrelated noises. Fig.4.16 illustrates the noise signals additive used for

each effective position signal and system speed. In Fig.4.17, the displacement and
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Figure 4.16: Noise signals in the test case I for displacement and velocity mea-
surements.

Figure 4.17: Displacement and velocity responses in the test case I under influence
of additive noise.

velocity responses are illustrated, including the additive noise, whose signals are

minimally affected by the presence of noise, compared with the dynamics shown

in Fig.4.11, due to the closed-loop low-pass filtering behavior between the noise

and the effective values of displacement and velocity. Besides, the dead-zone

estimation is displayed in Fig.4.18, where the proposed approach minimizes the

influence of measurement noise in the steady-state, giving a good estimation for

br,1 and bl,1. In short, the proposed strategy behaves as expected in the presence

of measurement noise.

50



Figure 4.18: Dead-zone estimation parameters under the proposed approach and
additive noise for the system in Test case I.

4.2.2 Test case II: a multiple-input marginally stable vibrating
system

This test case is based on the same system presented in the test case I, where

open-loop eigenpairs are λ1,2 = ±i and λ3,4 = −1± 2i. The influence matrix B
is now defined to consider the existence of two actuators in the system whose

distribution is given by

B =

[
1 1
2 0

]
and the partial pole placement for multiple input systems based on the receptance

matrix system is applied to reassign the first eigenpair to the position µ1,2 =−1± i,

while the second eigenpair is not modified, similar to test case I, considering that

αµk,1 = αµk,2 = [1 0.5]T , resulting in:

F =

[
−0.5714 −0.5714
−0.2857 −0.2857

]
, G =

[
−0.2857 −0.2857
−0.1429 −0.1429

]
where the time delay is set as τ = 5s, δ = 10−6 to obtain a perturbed open-loop

receptance transfer matrix H∆(s) and the filter applied is the same as the test case

I. To evaluate the UIO discrete adaptive scheme proposed, were considered an

asymmetrical dead zone as follows: (i) br,1 =+1.1 and bl,1 =−0.7 to first input;

(ii) br,2 = +0.9 and bl,2 = −0.6 to second input; (iii) the initial value to adaptive

dead-zone algorithm was defined as +1.5 to br,1 and br,2, respectively, and −1.5
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Figure 4.19: Dead-zone effect on time-domain response for the system in Test
case II.

Figure 4.20: Phase portrait plane under dead-zone influence, for the system in
Test case II.

to bl,1 and bl,2, respectively. The Simulinkr default ode45 integration method

also was applied for this test case, similar to test case I. For the discrete-time UIO,

the sample time was defined Ts = 0.1s (similar to test case I), β = 106 (β� 1

to mitigate chattering), the adaptive constant gains Kl,i = Kr,i = 0.15 and initial

conditions for displacement and velocity are, respectively, x(0) = [1 0.5]T m and

ẋ(0) = [0 0]T m/s.

In Fig.4.19, the time-domain performances for the displacement and velocity
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Figure 4.21: Dead-zone estimation parameters under the proposed approach for
the system in Test case II.

Figure 4.22: Time-domain response with FSP and UIO discrete observer approach
for the system in Test case II.

under the dead-zone influence are displayed, also considering time-delay and FSP

approach compensation. The dead-zone influence also can be seen in Fig.4.20,

where the cyclic steady-state for displacement and velocity, with initial conditions,

are displayed by the phase portrait.

The dead-zone break-points estimation for the first input (br,1 and bl,1) and the

second input (br,2 and bl,2) is displayed in Fig. 4.21. Based on accurate time es-
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Figure 4.23: Phase-portrait plane under the proposed approach for the system in
Test case II.

Figure 4.24: Closed-loop control effort for the system in Test case II, with FSP
and UIO discrete observer dead-zone compensation approach.

timation responses for dead-zone break-points calculation, it is important to high-

light that the discrete observer approach also can be applied for multi-input sys-

tems, keeping stability and convergence characteristics predicted in the proposed

approach.

In Fig. 4.22, time-domain performance under the asymmetrical dead-zone

inverse compensation approach is displayed, as it is possible to verify that dead-

zone effects for both inputs are mitigated, without affecting closed-loop stability,

as seen expected, as a consequence of accurate estimation for dead-zone break-
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Figure 4.25: Estimation signals ω1 and ω2 for discrete observer for the system of
Test case II.

points br,1, bl,1, br,2 and bl,2. In Fig.4.23, the phase portrait, under the proposed

approach, is displayed, where the trajectories converge for an equilibrium point,

near the origin of the plane, also verifying the accurate estimation for the dead-

zone break-points parameters.

Figure 4.26: Displacement responses x1 and x2 for Test case II with the FSP
and UIO adaptive dead-zone compensation approach for several dead-zone ini-
tial values.

In Fig. 4.24 is illustrated closed-loop control effort for the complete approach
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Figure 4.27: Velocity responses x1 and x2 for Test case II with the FSP and UIO
adaptive dead-zone compensation approach for several dead-zone initial values.

Figure 4.28: Displacement and velocity responses in the test case II with modeling
error and additive noise.
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Figure 4.29: Dead-zone estimation parameters under the proposed approach for
the system in Test case II with modeling error and additive noise.

(FSP and discrete observer dead-zone compensation), where it verifies, for both

inputs, that signals v(t) and u(t) tend to zero, as a consequence of estimation

errors for the dead-zone break points decrease to zero, due to discrete observer

approach and its correct designing. As expected, this convergence for dead-zone

estimation is illustrated in Fig.4.23, where the UIO estimating signals ωi → 0

when the presence of dead-zone influence is mitigated from the inputs of the sys-

tem.

In Fig.4.26 and Fig.4.27, the displacement and velocity with FSP and discrete-

time UIO adaptive scheme are depicted, respectively, for several dead-zone break-

points initial values sets, where br = {+0.8,+1.7,+2.5} and bl = {−0.8,−1.7,

− 2.5}. Note that the steady-state responses are not affected by choosing the

different dead-zone initial guess limits, considering the approach proposed, inclu-

ding time-delay presence, which is mitigated by FSP.

The time-domain response for displacement and velocity, considering a mode-

ling error such as αM = −0.05, αC = +0.07 αK = −0.05, αr = −0.02 and the

presence of an additive noise at displacement and velocity measurements, similar

to the test case I, is illustrated in Fig.4.28. The additive noise was configured as
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follows: (i) noise power 10−3W ; (ii) sample time equals 0.1s and (iii) distinct

seed parameter values for each signal, for representation of sensors with uncorre-

lated noises. As illustrated, the signals are minimally affected, compared with the

dynamics shown in Fig.4.22. Besides, the dead-zone break-points estimations br

and bl illustrated in Fig.4.29 are also minimally affected under this condition, as

expected, and the proposed approach has a relevant robustness margin.

4.2.3 Test case III: a two-link robot arm

This example consisted of a two-link flexible robot arm illustrated in Fig. 4.30

and was employed in [2], [62] as a benchmark for vibration control analysis. The

matrices of the model were obtained analytically and validated through an expe-

rimentally identified receptance in both works and can be considered a prototype

of real-world engineering application, such as pick and place robotic task. This

system has 2 DoFs, comprising the absolute rotations θ1 and θ2, both in rad. The

joint A is actuated through the torque Tm (N/m) by a DC motor, and joint B is pas-

sive, with a torsional spring ks. The Simulinkr default ode45 integration method

was applied for this test case. Based on the experimental approach developed in

[2], the M, C, K and B matrices are

M =

[
0.047 0.0002767

0.0002767 0.000168

]
, C =

[
0.012 0.0004
0.0004 0.0003

]
,

K =

[
0.4624 −0.1772
−0.1772 0.1932

]
, B =

[
1
0

]
.

Figure 4.30: The two-link flexible robot arm and its kinematic scheme [2] for Test
case III.
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Figure 4.31: Time-domain responses with FSP and UIO discrete observer ap-
proach for the system in Test case III: (A) Displacement; (B) Closed-loop control
effort.

where the first open-loop eigenpair is λ1,2 =−1.0382±38.2093i and the second

eingepair is λ3,4 = −1.1966± 7.3248i. The first eigenpair is reassigned to the

position µ1,2 =−10±20i, while the second eigenpair is not modified, where state

feedback gains obtained are

F =
[
−0.0279 0.0297

]
, G =

[
1.5767 −1.5038

]
and the time delay is setting as τ = 0.1s. The filter applied in FSP receptance-

based method described on [5] was implemented for τ f = 0.02 and considering

resonant frequency ωr = 38.2093rad/s, resulting in

φ(s) =
−0.0005130s2−0.02523s+1

(0.02s+1)3

Now, consider an existence of an asymmetrical dead zone on joint A actua-

tor, where br,1 = 0.04 and bl,1 = −0.03, The sample time to discrete observer

approach was defined as Ts = 0.001s, the initial value to adaptive dead-zone al-

gorithm was defined as +0.05 to br,1 and −0.02 to bl,1, respectively, the adaptive

constant gain Kl,i = Kr,i = 0.45 and initial conditions x(0) = [0.1 0]T rad and

ẋ(0) = [0 0]T rad/s.

In Fig. 4.31, the time-domain response and closed-loop effort control are de-

picted with a discrete observer approach. Note that occurs no switching during
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Figure 4.32: Dead-zone estimation parameters under the proposed approach for
the system in Test case III.

Figure 4.33: Dead-zone estimation parameters under the proposed approach and
additive signal for the system in Test case III.

transient at the same time that the discrete observer approach calculates the br,1

and bl,1 estimated values along the time. In this situation, occurs a polarization

in the adaptive structure, which can also be visualized in Fig. 4.32, where bl,1

estimation converges to a value very close to the starting point of the observer,

while br,1 is successfully estimated.

For dealing with polarization, a square wave additive persistent signal is ap-

plied, of frequency 1Hz and amplitude of 0.01, at closed-loop control effort signal

vi(t), to establish a switching behavior. In Fig. 4.33 and Fig. 4.34, the dead-zone
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Figure 4.34: Time-domain responses with FSP and UIO discrete observer ap-
proach for the system in Test case III: (A) Displacement; (B) Closed-loop control
effort.

Figure 4.35: Time-domain responses with FSP and UIO discrete observer ap-
proach for the system in Test case III: (A) Displacement; (B) Closed-loop control
effort.

break-points estimations and time-domain responses for displacement and closed-

loop control effort are illustrated, where the additive signal applied for an interval

of 2s provides a better estimation to bl,1 parameter, in comparison to Fig. 4.35,

without affecting br,1 estimation. Also, note that additive signal provides switch-

ing behavior on state vector ξ(t) and control effort.

Thus, to improve an accurate estimation of dead-zone break-points, the addi-

tive signal is applied for 30s over control effort and then turned off, as depicted
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Figure 4.36: Dead-zone estimation parameters under the proposed approach for
the system in test case III.

Figure 4.37: Time-domain responses with FSP and UIO discrete observer ap-
proach and modeling error for the system in test case III.

in Fig. 4.35, aiming to obtain b̂r,1→ br,1 and mitigating the dead-zone influence

over the system. In Fig. 4.36, the dead-zone break-points estimation is depicted

as accurate.

For evaluating the robustness under modeling error, it were considered αM =

αC = αK = +0.07 and αr = +0.10, such as additive signal was applied for 15s

over control effort and then turned off, dealing with polarization and robustness

using the proposed approach. The time-domain responses for displacement and

velocity are depicted in Fig. 4.37, illustrating that steady-state convergence ob-
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Figure 4.38: Displacement responses with FSP and UIO discrete observer ap-
proach and modeling error in the test case III: (A) αM = αC = αK = −0.25 and
αr = 0; (B) αM = αC = αK = +0.25 and αr = 0;

Figure 4.39: Displacement responses with FSP and UIO discrete observer ap-
proach and modeling error in the test case III: (A) αM = αC = αK = 0.0 and αr =
−0.19; (B) αM = αC = αK = +0.0 and αr = +0.20;

tained is similar to time-domain curves obtained for the absence of modeling error

in Fig 4.35(A). Besides, the sensitivity also was evaluated considering the follow-

ing premises: (i) modeling error relative to time delay (αr = 0) for a limit values

of −0.25 and +0.25 for αM, αC and αK , with the aim of illustrating the modeling

error for M, C and K matrices, which the results are illustrated in Fig.4.38; (ii)

only the modeling error relative to time delay for αr =−0.19 and αr =+0.20 and

αM = αC = αK = 0.0, which the results are illustrated in Fig.4.39. In Fig.4.38, the

convergence obtained is similar to time-domain curves obtained for the absence
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of modeling error in Fig 4.35(A) and in 4.37 (for displacement time responses). In

Fig.4.39, observe that the modeling error limits imposed to the approach can lead

to an unstable condition, which in turn can define a sensitivity range for evaluating

the robustness for closed-loop stability.

4.2.4 Test case IV: the 3-DoF asymmetric system flutter sup-
pression case

In this standard benchmark [58], the system matrices of a 3-DoF model for a

wing in an airstream are given as

M =

 17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725

 , C =

 7.66 2.45 2.1
0.23 1.04 0.223
0.60 0.756 0.658

 ,
K =

 121 18.9 15.9
0 2.7 0.145

11.9 3.64 15.5

 , B =

 1
0
0

 .
where the eigenvalues are λ1,2 =−0.8848±8.4415i, λ3,4 = 0.0947±2.5229i and

λ5,6 = −0.9180± 1.7660i, with the second one being unstable, from where it

is observed that C and K matrices contain asymmetrical components. Flutter

instability is a relevant issue for aerospace and building engineering and can cause

the collapse of flexible structures if not duly treated. Well-known cases of flutter

damages are the 1952 Farnborough Airshow crash [63] and (possible) Tacoma

Narrows Bridge collapse [64], [65]. The internal delay is τ = 1s. A no-spillover

design is carried out to reassign this unstable eigenpair to µ3,4 = −1± 2.5229i

and thus suppress flutter vibrations. Also, in this test case, the Simulinkr default

ode45 integration method was applied. The feedback matrices obtained for no

spillover design, considering no delay, are

F=
[
−40.025 −3.9307 −7.0637

]
, G=

[
−3.8827 7.1916 0.5330

]
.

A discrete filtered Smith predictor approach proposed in [6] was designed to

deal with delay effects and ensure internal stability. Thus, the FSP filter, in this

case, considering sample time Ts = 0.1s and free filter parameter a = 0.6065, is

given by:

φ(z) =
z3−1.273z2−0.6766z+1.011
z3−1.82z2 +1.104z−0.2231
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Figure 4.40: Nyquist diagram for the system in Test case IV.

Besides, to evaluate the effects of dead-zone nonlinearity over the system, a

symmetrical dead zone is considered, whose break-points are br,1 = 0.5, bl,1 =

−0.5, β = 106, the adaptive constant gains Kl,i = Kr,i = 0.3 and initial conditions:

(i) for displacement vector: x1(0) = 0.1 in, x2(0) = 0 rad and x3(0) = 0 rad; (ii)

for velocity vector: ẋ1(0) = 0 in/s, ẋ2(0) = 0 rad/s and ẋ3(0) = 0 rad/s. The

metric units for the effort control is the poundal [pdl].

Based on describing functions method, it is possible to predict the oscillation

frequency originating from the dead zone using the Nyquist diagram and consider

that, due to the imparity of the dead-zone symmetrical curve, the amplitude of

oscillation does not depend on frequency [49], [50], [53]. Thus, in Fig. 4.40, the

Nyquist curve of linear part L(s) = [−(sF+G)H(s)B] together with the negative

reciprocal describing function of dead-zone nonlinearity −1/N(A) is displayed.

On the two curves intersection, −1/N(A) curve along into direction of amplitude

increasing from instability area to stable area, and the frequency characteristic

will make two circles in the positive direction around the point (−1,0). This

case is stable based on the Nyquist criterion since the number of turns in the
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Figure 4.41: Dead-zone amplitude analysis for the Test case IV. (A) Control effort
v(t). (B) Describing function dead-zone curve N(A)

positive direction coincides with the number of open-loop unstable poles. Thus,

the frequency of system limit cycles oscillation can be obtained at this intersection

in Fig. 4.40 and its value is ωr = 2.53rad/s. Note that oscillation frequency is

an important definition, in the sense that the sampling time for discrete observer

designing can be defined based on the Nyquist criteria 2 fs > fr, where fr is the

oscillation due to dead-zone nonlinearity and fs is the sampling frequency, in Hz.

For this test case, Ts = 0.1s fulfills the criteria above and is the same defined value

for the discrete FSP approach above. Besides, by the same intersection, is possible

for estimating the amplitude relative to the output signal system. Considering

that this signal corresponds to the v(t) (control effort based on displacement and

velocity states signals of receptance-based systems), then, based on the numerical

value obtained from its intersection (on the Nyquist diagram, −10.6), N(A) =

0.094. By the N(A)× (A) plotted, considering that br = bl = δ = 0.5, then the

estimated amplitude for A is about 0.615, as displayed in Fig.(4.41)B. Note that it

is about the same amplitude displayed in Fig.(4.41)A for the v(t) signal at steady-

state condition. Thus, this method, for the Test case on analysis, gives an accurate

result for frequency and amplitude for limit cycles oscillation due to dead-zone

influence.

In Figs.4.42 and 4.43, b̂r,1, b̂l,1 and the time-domain response are displayed,

respectively. Note that, through the discrete FSP approach, is possible to can-

cel the unstable open-loop modes from disturbance to displacement and velocity,
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Figure 4.42: Dead-zone estimation parameters under the proposed approach for
the system in test case IV.

Figure 4.43: Displacement and velocity responses with the proposed approach for
the system in test case IV.

obtaining stable predictions for X(s) and Ẋ(s) to guarantee internal stability [6].

The discrete observer approach performs very well, as expected, with an accurate

estimation for br,1 and bl,1, mitigating its effects on time-domain response.

The time-domain responses for displacement and velocity considering a mod-

eling error of 0.08 for αM, αC, and αK are illustrated in Fig.4.44. The proposed

approach has a good robustness margin to allow the convergence of states to the

origin even with some modeling error and open-loop unstable poles. This same

conclusion is valid for the results obtained for control effort signals v(t) and u(t),
such as the UIO estimation signal ω(t) displayed in Fig.4.45. In Fig.4.46 are
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illustrated the control effort signals v(t) and u(t), considering the modeling er-

ror only over the M matrix, for αM = −0.10 and αM = +0.20, where the pro-

posed approach has a good robustness margin and convergence in steady-state. In

Fig.4.47, only the modeling error for C matrix was applied, for αC = −0.25 and

αC =+0.25, which the displacement time responses converge in a steady-state, in

a similar behavior to the velocity time responses depicted in Fig.4.48 for modeling

error limits in for K matrix (αK =−0.15 and αK =+0.15).

Figure 4.44: Displacement and velocity responses with the proposed approach
and modeling error in the test case IV.

Figure 4.45: Time-domain responses with FSP and UIO discrete observer ap-
proach for the system with modeling error in Test case IV: (A) Closed-loop control
effort; (B) UIO dead-zone estimation signal.
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Figure 4.46: Closed-loop control effort responses with FSP and UIO discrete
observer approach for the system with modeling error in Test case IV: (A)
αM =−0.10 (B) αM =+0.20.

Figure 4.47: Displacement responses with FSP and UIO discrete observer ap-
proach for the system with modeling error in Test case IV: (A) αC = −0.25 (B)
αC =+0.25.
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Figure 4.48: Displacement responses with FSP and UIO discrete observer ap-
proach for the system with modeling error in Test case IV: (A) αK = −0.15 (B)
αK =+0.15.
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Chapter 5

Concluding remarks and future
works

This dissertation proposed a new approach to tackle dead-zone nonlinearity

and time delay for receptance-based second-order systems. The approach brings

together two outstanding tools: the filtered Smith predictor and dead-zone com-

pensation strategy, concerning an adaptive mechanism based on discrete state ob-

server to track the unknown asymmetrical dead-zone break-points parameters.

This approach was applied to several examples based on benchmarks from the

literature, aiming to illustrate the approach’s effectiveness, involving both stable

and unstable open-loop poles and multi-input second-order systems. In the Test

Case I, the unknown input-output observer approach has been compared with the

adaptive schema proposed in [15] with no time delay, with the UIO giving a good

estimating for the unknown dead zone, based on state vector ξ(t) and v(t) control

signal, both accessible for measuring, which can be considered an advantage in

terms of practical applications. Besides, the overall approach was tested under

time delay, for several initial guesses for unknown dead zone, under modeling

errors, and additive noise for displacement and velocity measurements. The time

responses illustrated that the overall approach ran as expected. In Test Case II,

the partial pole placement for multiple inputs was applied, where the complete

approach was tested for similar conditions as illustrated in Test Case I. The time

responses and phase portrait planes illustrated the effectiveness of the proposed

schema. For Test Case III, a link-robot arm was tested under time delay and

an unknown dead zone, where it was applied a persistent signal on v(t) to deal

with polarization. Similar to later examples, it illustrated the effectiveness of the
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proposed schema. In Test Case IV, based on a system modeled by an asymmetrical

receptance matrix that results in unstable poles, the discrete-time FSP was applied

to deal with time delay, as proposed in [6]. Describing function method was

applied to verify the existence of self-sustained oscillations (by Nyquist diagram)

and estimate their amplitude and frequency. The frequency value is essential to

determine the sampling time for the discrete observer UIO.

Based on these results, the following contributions could be verified:

• (i) The time-delay influence was mitigated by the continuous and discrete-

time receptance-based FSP approach, which considers the active vibration

control designing of its structure;

• (ii) The proposed dead-zone inverse compensation strategy provided chat-

tering mitigation, and its unknown parameters were dynamically estimated

through a discrete-time unknown input observer - UIO - based on the state

vector from the system (displacement and velocity) and the feedback con-

trol law signal;

• (iii) The BIBO stability was addressed in this thesis, which the approxi-

mated dead-zone nonlinear compensation can be described for an equivalent

linear bounded signal disturbance can.

• (iv) The closed-loop control law can be designed based on a receptance

model without delay or dead zone, and the FSP mitigates the effects of

the input delay. Uncertain input dead-zone effects were mitigated by UIO

adaptive schema.

Any receptance-based design strategy for delay-free models can be used for

second-order systems with input delay and an uncertain dead zone.

Based on this thesis, two technical papers were written:

• André Juarez Jaime Duarte, Tito Luís Maia Santos, José Mário Araújo,

Preditor de Smith Baseado em Receptâncias para Sistemas de Segunda

Ordem com Atraso e Compensação de Zona Morta, Proceedings of SBAI

2021, doi: 10.20906/sbai.v1i1.2569.
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• André Juarez Jaime Duarte, Tito Luís Maia Santos, José Mário Araújo, A

receptance-based vibration control with dead-zone compensation for sys-

tems with input delay, Mechanical Systems and Signal Processing, Ac-

cepted May 9, 2022.

For future works, based on the proposed approach for receptance-based sys-

tems for continuous and discrete-time representations, some suggestions can be

summarized:

• (i) Extend the analysis and design of adaptive scheme for inclusion and

adaptive estimating of other nonlinearities together with dead zone, such

as asymmetric saturation and backslash, commonly found in mechanical

systems.

• (ii) Extend the adaptive method for time-variant dead-zone nonlinearity,

where the unknown parameters will vary over time, analyzing the adaptive

mechanism performance for parametric variations.

• (iii) Extend the analysis for a time-variant delay at the system’s input, con-

sidering the filtered Smith predictor for dealing with time delay, where

the stability and convergence criteria, considering the influence of adaptive

schema on closed-loop control, could be detailed.

• (iv) For the overall approach, emphasizing the adaptive schema, the treat-

ment for disturbance rejection at the system’s input in closed-loop control

aims to minimize its effect.
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Appendix A

Describing function representation

To represent a nonlinear component by a describing function, consider a sinu-

soidal input û(t) = Asin(ωt), amplitude A and frequency ω and its output signal

u(t), represented by its Fourier representation:

u(t) =
a0

2
+

∞

∑
n=1

[ancos(nωt)]+ [bnsin(nωt)] (A.1)

where the Fourier coefficients are usually functions of A e ω, given by:

a0 =
1
π

∫
π

−π

γ(t)d(ωt) (A.2)

an =
1
π

∫
π

−π

û(t)cos(nωt)d(ωt) (A.3)

bn =
1
π

∫
π

−π

û(t)sin(nωt)d(ωt) (A.4)

Due to imparity property, that implies in a0 = 0, and considering that only the

fundamental Fourier component is considered, û(t) is given by:

u(t) = u1(t)≈ a1cos(ωt)+b1sin(ωt) = Msin(ωt +φ) (A.5)

where:

M(A,ω) =
√

a2
1 +b2

1, φ(A,ω) = arctan(
a1

b1
) (A.6)

and, in complex representation:

u1(t) = Mei(ωt+φ) = (b1 + ia1)eiωt (A.7)
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Similarly to the concept of frequency response function, which is the fre-

quency domain ratio of the sinusoidal input and the sinusoidal output of a system,

the describing function of the nonlinear element is defined by complex ratio of the

fundamental component of the nonlinear element by the sinusoidal input:

N(A,ω) =
Mei(ωt+φ)

Ae jωt =
1
A
(b1 + ia1) (A.8)

Thus, with a describing function representing the nonlinear component, the

nonlinear element, in the presence of sinusoidal input, can be treated as if it were

a linear element with a frequency response function N(A,ω).
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Appendix B

Continuous and discrete-time FSP
filters design

In this appendix, the filter design for filtered Smith predictor, considering con-

tinuous [5] and discrete time [6] representations, will be explained.

B.1 Continuous-time FSP filter design

The low-pass filter considered for continuous-time FSP approach, is given by:

φ(s) =
1+a1s+a2s2 + . . .+aksk

(τ f s+1)k+1 (B.1)

where: (i) τ f > 0 is a free tuning parameter; (ii) al , l = 1, . . . ,k are defined in

order to guarantee [1−φ(s)e−sτ]|s= jωi = 0; (iii) i = 1, . . . ,v, v is the total number

of undesirable resonance peaks, avoiding high frequency noise amplification. The

main tuning condition for FSP is defined by:

1+a1s+a2s2 + . . .+aksk|s= jωi = (τ f s+1)k+1esτ|s= jωi (B.2)

For a given τ f , note that (τ f s+1)k+1esτ|s= jωi can be decomposed into real and

imaginary parts:

σ1 = Re( jτ f ω1 +1)k+1e jωiτ (B.3)

β1 = Imag( jτ f ω1 +1)k+1e jωiτ (B.4)
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and

(τ f s+1)k+1esτ|s= jωi = σi + jβi (B.5)

Based on equation above, is possible to define the following set of linear equa-

tions:


ω1 0 −ω3

1 0 . . .
0 −ω2

1 0 −ω4
1 . . .

...
...

...
...

...
ωv 0 −ω3

v 0 . . .
0 −ω2

v 0 −ω4
v . . .





a1
a2
a3
a4
...

ak−1
ak


=



β1
σ1−1

β2
σ2−1

...
βv

σv−1


(B.6)

where the 2v× k matrix on the left-nad side of Eq.(B.6) has 2v independent rows

if ωi = ωl , ∀ i 6= l and k = 2v.

B.2 Discrete-time FSP filter design

In a similar way for continuous-time prediction error filter design, the filter

structure for digital implementation is given by:

φ(z) =
zm +b1zm−1 + . . .+bm−1z+bm

(z−am)
(B.7)

where the free parameter a, 0 < a < 1, is used to tuning the trade-off between

transient performance and robustness. For preservation of the steady-state char-

acteristics in the presence of constant disturbances. Thus, applying the constraint

limz→1 φ(z) = 1:

b1 + . . .+bm−1 +bm = (1−a)m (B.8)

If the system have a set of l unstable poles p1, . . . , pl to be cancelled, then the

following identities must to be matched for k = 1, . . . , l:

[1− z−`φ(z)]|z=pk = 0 (B.9)

[b1 pm−1
k + . . .+bm−1 pk +bm = p`k(pk−a)m (B.10)
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Then, combining the Eq.(B.8), Eq.(B.9) and Eq.(B.10), the linear equations to

define the b1, . . . ,bm coefficients of the filter is given by:


1 . . . 1 1

pm−1
1 . . . p1 1
... . . . ...

...
pm−1

l 0 pl 1




b1
...

bm−1
bm

=


(1−a)m−1

p`1(p1−a)m− pm
1

...
p`l (pl−a)m− pm

l

 (B.11)

where m = l +1 is the order that gives an unique solution for the equation above.
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Appendix C

UIO convergence analysis

Consider the nominal problem without disturbance and assume that β is suffi-

ciently high such that q(t) is negligible. In this case, ωωω[k−d−1] is defined such

that

ωi[k−d−1] = ρ(γ(vi[k−d−1]))− vi[k−d−1]

= ρ(sati(βvi[k−d−1])+ vi[k−d−1])−v[k−d−1].(C.1)

Hence, if vi[k−d−1]> 0, then

ωi[k−d−1] = b̂r,i[k−d−1]−br,i, (C.2)

where br,i comes from the dead-zone and b̂r,i[k] is the expected compensation.

Moreover, if vi[k−d−1]< 0, then

ωi[k−d−1] =−b̂l,i[k−d−1]+bl,i. (C.3)

Now, for notation simplicity, consider θr,i[k] = b̂r,i[k] and θl,i[k] = −b̂l,i[k].

Notice that both θr,i[k] and θl,i[k] can be classified into adaptation instant and non-

adaptation instants. If k is an adaptation instant for b̂r,i[k], then

θr,i[k] = θr,i[k−1]−Kr,iTs(θr,i[k−d−1]−br,i). (C.4)

Obviously, θr,i[k] = θr,i[k−1] whenever k is not an adaptation instant. With respect

to the adaptation of θl,i[k] =−b̂l,i[k]

θl,i[k] = θl,i[k−1]−Kl,iTs(θl,i[k−d−1]−br,i). (C.5)

The convergence analysis of θr,i[k] (or θl,i[k]) with respect to Kr,i (or Kl,i) is

not so direct because the adaptation is not regularly performed. In this case, linear
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time-invariant results do not hold. However, this analysis can be simplified con-

sidering the convergence of the envelope of the evolution which means that the

non-adaptation instants are neglected from the convergence analysis.

The analysis of the envelope departs from the fact that θr,i[k−1] = θr,i[k−2]

= ....= θr,i[k− d̆r,i[k]]. Now, assume without loss of generality that d̆r,i[k]≤ d+1.
1 Then, the adaptation law can be shifted as follows

θr,i[k] = θr,i[k− d̆r,i[k]]−Kr,iTs(θr,i[k−d−1]−br,i). (C.6)

To complete the convergence analysis with the small-gain theorem, consider that

ηi[k−1] = θr,i[k− d̆r,i[k]]−θr,i[k−1] and br,i = 0 due to the superposition principle

as follows

θr,i[k] = θr,i[k−1]−Kr,iTsθr,i[k−d−1]+ηi[k−1]. (C.7)

The transfer function from ηi[k] to θr,i[k] is defined for each i = 1,2, ...,m by

Pr,i(z) = z−1

1−z−1+Kr,iTsz−d−1 . Finally, the envelope of θr,i[k] is bounded if Kr,i is de-

fined such that Pr,i(z) is a stable transfer function and the following norm condi-

tion is respected ||Pr,i(z)(1− z−1)||∞d < 1 as discussed in [47]. The same result

holds for Pl,i(z) = z−1

1−z−1+Kl,iTsz−d−1 where Kl,i should be defined such that Pl,i(z)

is a stable transfer function and ||Pl,i(z)(1− z−1)||∞d < 1.

It should be remarked that this is a sufficient condition that guarantees BIBO

stability of the envelope of θr,i[k] and θl,i[k] convergence is achieved due to the

integral action in the nominal case in the presence of a persistent transient. Any-

way, this type of sufficient condition may be significantly conservative because

arbitrarily fast time-varying delays can be considered. In practice, convergence is

verified even if the small-gain criterion is not respected.

1If d̆r,i[k]> d +1, the same result holds with θr,i[k−1] = θr,i[k−d−1].
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