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RESUMO

Esta dissertacao de mestrado propoe a integracao de um algoritmo de Campos Potenciais
Artificiais Adaptativos com uma nova técnica de controle de orientagao para planejamento
de rotas aplicado a manipuladores robédticos. O desenvolvimento de sistemas autonomos
robdticos passou por varios avangos na area de algoritmos de planejamento de rotas.
Esses sistemas geram rotas livres de colisao com objetos no espaco de trabalho do robo.
Neste contexto, a técnica dos Campo Potenciais Artificiais tem sido foco de melhorias nos
ultimos anos devido a sua simplicidade de aplicacao and eficiéncia em sistemas de tempo
real, desde que nao seja requerido o mapeamente do espaco de trabalho do robo. Apesar
da sua eficiéncia, esta técnica é susceptivel a problemas de minimos locais de diferentes
naturezas, tais como o "Goals Non-Reachable with Obstacles Nearby” (GNRON). Para
resolver este problema, é sugerido o uso de uma melhoria chamada Campos Potenciais
Artificiais Adaptativos usada em conjutno com a técnica de controle de orientagao do
efetuador proposta. A forca resultante, gerada dos Campos Potenciais Artificiais Adap-
tativos, guia o efetuador do robo para o objetivo. O framework Robot Operating System
(ROS) e o rob6 manipulador colaborativo UR5 sao utilizados para validar o método pro-
posto no posicionamento da ferramenta do efetuador final em tarefas de pick and place.

Palavras-chave: Campos Potenciais Artificiais, Controle de Orientacao, Manipu-
ladores Robéticos, Planejamento de Rotas
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ABSTRACT

This Master’s thesis proposes the integration of an Adaptive Artificial Potential Fields
algorithm with a new end effector orientation control technique for real-time path plan-
ning applied to robotics manipulators. The development of autonomous robotic systems
has undergone several advances in path planning algorithms. These systems generate ob-
ject collision-free paths in the robot’s workspace. In this context, the Artificial Potential
Fields technique has been the focus of improvements in recent years due to its simplicity
of application and efficiency in real-time systems, since it does not require a global map-
ping of the robot’s workspace. In spite of its efficiency, this technique is susceptible to
local minimum problems of different natures, such as Goals Non-Reachable with Obsta-
cles Nearby (GNRON). To solve this problem, it is suggested the use of an improvement
called Adaptive Artificial Potential Fields used in conjunction with the proposed end
effector orientation control technique, which allows reaching a desired orientation of the
end effector. The resulting force, generated from the Adaptive Artificial Potential Field,
guides the robot end effector to the goal. The Robot Operating System (ROS) framework
and a collaborative robot manipulator UR5 are used to validate the proposed method on
an approaching of the end-effector tool in a pick and place task.

Keywords: Artificial Potential Field, Orientation Control, Robotic manipulators, Path
planning
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Chapter

INTRODUCTION

The so called industry 4.0 is bringing changes in the relationship between the physical and
the virtual worlds. Almost instantaneous connections with devices at long distances, pow-
erful processing capabilities in embedded systems, algorithms capable of teaching itselves
and other technological advances are making possible new ways of production tangible
goods, management of processes and people and deliver services. Some technologies that
are responsible for those enhancements are: additive manufacturing, Internet of Things
(IOT), artificial intelligence, advanced robotics, among others (OLSEN; TOMLIN, 2019).
In fact, the Industry 4.0 is not only the advances in all those areas, but the potential of
interaction and synergies between subsets of these technologies.

Additive manufacturing, also known as 3D printing is the process of producing pieces
from a Computer Aided Design (CAD), that is virtually sliced into a set of flat horizontal
layers models, and then, through some technology as material jetting, powder bed fusion,
vat polymerization or other, is transferred to a printer to produce the object layer by
layer. This brings great changes in operational quality, flexibility, speed and cost.

The avarage price of a sensor fell by 90% and microprocessor clockspeeds increased
by a factor of 991 between 1992 and 2014 (HOLDOWSKY et al., 2015). Those facts
allowed improvements in measurements and communications technologies in embedded
systems and connection and monitoring of large sets of devices that can take actions
according to real-time changes in the environment. This is the concept of Internet of
Things (IOT), where large sets of data are available at any time so decisions can be
made much faster and reliably. For example, sensor in a room can monitor its occupancy,
temperature, humidity and other variables and this data can be sent over internet to
several devices, with different technologies, that can process, store and actuate in the
environment autonomously.

Artificial intelligence has not a unique definition. Usually it it refers to algorithms
that have a similar behaviour to humans, i.e. it has the capability to adapt and learn
and improve its performance. This learning process can be supervised or unsupervised.
Several types of algorithms are considered artificial intelligence, such as neural networks,
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deep learning algorithms, computer vision, machine learning and others. Artificial intelli-
gence industrial applications can be categorized as descriptive, predictive or prescriptive.
Descriptive applications are related to categorization and identification of objects or spe-
cific features. Predictive applications have the ability to forecast systems conditions and
output based on the understanding on the knowledge of cause-and-effect relationships.
Prescriptive applications have a goal and solve it for the optimal decision based on the
algorithm used.

Conventional robots in a factory are typically placed within cages so it can safely
perform its tasks without threatening the workers around it. This is because was not
possible to equip robots with sensors and intelligence to adapt in a constantly changing
environment. But the advances in sensors and artificial intelligence allow the collabo-
ration between humans and robots in the same work space and in the same activities.
Robots capable of collaborative work are also called “cobots”. Examples of cobots are
the UR Series robots, figure 1.1, from Universal Robots (ROBOTS, 2019a).

Figure 1.1: Collaborative UR Series from Universal Robots (from left to right: UR3, URb
and UR10)

Occupational health and safety criteria are of great importance in the implementation
of collaborative robotics (GUALTIERI; RAUCH; VIDONI, 2021). From 2015 to 2018,
the papers related to this area can be divided in two categories: safety and ergonomics.
Safety being divided in two sub-categories: contact avoidance and contact detection
and mitigation. And ergonomics divided in: physical ergonomics and cognitive and
organizational ergonomics.

Figure 1.2 show that contact avoidance and contact detection and mitigation are the
most studied topic within the sub-categories. Also, from figure 1.3 can be noticed that
all areas presented a growing in the scientific production in the last years. This points to
the increasing relevance of collaborative robotics in science and industrial applications.

In the sub-categories of contact avoidance and contact detection and mitigation, works
in motion planning and control represents 12.4% and 6.2%, respectively. Therefore, being
a crucial theme in the area (GUALTIERI; RAUCH; VIDONI, 2021). The present work
has the main focus in this area.
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Contact Avoidance Contact Detection and Physical Ergonomics Cognitive and
Mitigation Organizational
Ergonomics

Figure 1.2: Percentage distribution of papers for each sub-category (GUALTIERI;
RAUCH; VIDONI, 2021)

2015 2016 2017 2018
= Contact Avoidance = Contact Detection and Mitigation
= Physical Ergonomics ® Cognitive and Organizational Ergonomics

Figure 1.3: Total annual paper production per sub-category (* referring to a two year
time period) (GUALTIERI; RAUCH; VIDONI, 2021)
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Trajectory planning and control has to main objective to provide solutions to the
movement of the robots through algorithms that optimize to several criteria, such as:
collision avoidance, shortest path, smooth trajectories, velocity and acceleration control
et cetera. Additionally, the optimization can be made in real-time or prior to the motion
to start; rely on previous knowledge of the environment, or get the feedback of sensors
monitoring variables of interest in the ambient. The present work proposes a path plan-
ning algorithm for obstacle avoidance based on the Artificial Potential Fields technique,
assuming full knowledge of the static environment and made prior to the movement.

1.1 LITERATURE REVIEW

Several works in path planning algorithms with obstacle avoidance for robots, mobile and
manipulators, have been published (PATLE et al., 2019; Isenberg, 2017; Kar et al., 2016;
SAFEEA M., 2020; Zhang et al., 2018; Zahroof et al., 2019; XIN et al., 2016). Navigation
techniques can be divided in classical approaches - Cell Decomposition (CD), Roadmap
Approach (RA), Artificial Potential Fields (APF) - or reactive approaches - Genetic Algo-
rithm (GA), Fuzzy Logic (FL), Neural Networks (NN), Firefly Algorithm (FA), Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO), among other. Reactive
approches are more popular and widely used in path planning of mobile robots as they
perform better than classical approaches because of their higher capability to handle un-
certainty in the environment and are preferably used for real time applications. Also,
better performance of classical approaches can be achieved by hybridizing them with
reactive approaches (PATLE et al., 2019).

There are solutions for trajectory optimization to reach goals under kinodynamic
constraints (SINTOV, 2019). In this work, the algorithm chooses a optimal solution
based on a cost function. Simulations were made for a 6R manipulator and the algorithm
plans the path off-line prior to the motion. In (SAFEEA M., 2020), the application
of Newton method to collision avoidance problems and path planning for manipulators
with high degrees of freedom is studied. Compared to the classical gradient descent
method, the performance is improved with respect to motion generation, presence of
oscillations, gain tuning and convergence velocity. In (Isenberg, 2017), a path planning
method is presented for the presence of both obstacles and forbidden axes of rotation.
This approach uses geometry of unit-quaternion motion with potential fields.

In (Zahroof et al., 2019), a fast motion planning tool used for collision-free trajec-
tories generation is presented for satellite servicing. It also incorporates perception of
constraints in the environment and the continuous track of objects or of the end-effector.
In (XIN et al., 2016), the problem of path planning for redundant robots in unknown
dynamic environments is studied and a real-time dynamic system is proposed.

A common problem in classical path planning approaches is the presence of local min-
ima in the several cases of environments tested. (Zhang et al., 2018) proposes a improved
Rapidly-exploring Random Tree (RTT) algorithm simulated in complex environments
that can improve the success rate and efficiency of the planning.

The increasing research in the area of collision avoidance using the APF method has
been remarkable due to its typically small computation times (Quiroz-Omana; Adorno,
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2019). The application areas include manipulator robots, mobile robots, autonomous
cars, Unmanned Aerial Vehicles (UAVs), autonomous underwater vehicles, among others.
Some works in the area, as proposed by (GE; CUI, 2000), developed a technique called
Modifed Artifcial Potential Fields (MAPF) to solve Goals Non-Reachable with Obstacles
Nearby (GNRON) problems in mobile robots. An expansion to a three-dimensional space
of this technique was presented by (LUO; SU; WANG, 2012), but increasing the chances
of stagnation in a local minimum. (ZHANG; LIU; CHANG, 2017) developed the so-
called Adaptative Artificial Potential Fields (AAPF) to solve this MAPF problem. In
this method, concepts of classical APFs are used, when distant from the objective, and
MAPFs, when it is close to the objective. Thus, the path travelled does not face problems
related to local minimum caused by the repulsive potential fields and, at the same time,
is able to solve the GNRON problem.

The integration of classic APFs into Collision Cone Approach was proposed by (KIM
et al., 2016), so that a possible collision between mobile robots and obstacles can be
predicted. (LI et al., 2015) presented a method of path planning for mobile robots in
known, partially known or totally unknown environments. The APFs were integrated
into the Simultaneous Forward Search Method (SIFORS) to find a valid and short path
to the objective.

APF's have some local minimum problems specific of mobile and manipulators robots.
Mobile robots have greater freedom of movement, whereas in a chain of rigid bodies of
a manipulator, the movement of each joint changes the position of the previous joint
to reach a goal determined by the path planning algorithm. When attempting to reach
a final position, a robotic manipulator may stagnate to a local minimum due to the
repulsive forces acting on the links, a problem known as Reacharound Local Minimum
Problem (RLMP). (BYRNE; NAEEM; FERGUSON, 2013) used the methods known as
Goal Configuration Sampling, Subgoal-Selection, based on the Sampling-based method
and the Frpanded Convexr Hull algorithm, to avoid RLMPs local minimum caused by
APFs. (AKBARIPOUR; MASEHIAN, 2017) developed a method that integrates Prob-
abilistic Roadmap Method (PRM) and Lazy-PRM algorithms. This method was named
Semi-Lazy Probabilistic Roadmap Method (SLPRM) and it is based on Sampling-based
algorithms. The method was developed for application in robot manipulators. The re-
sults showed that the computational efficiency of the SLPRM algorithm is higher when
compared to the PRM and the Lazy-PRM algorithms.

1.2 OBJECTIVES OF THIS WORK

The main objective of this work is to propose improvements to the Classic Artificial
Potential Fields (APF) method described in (KHATIB, 1986), more specifically, solutions
to known problems of local minima such as Goals Non Reachable with Obstacles Nearby
(GNRON) and Reacharound Local Minimum Problem (RLMP), so it can be used in
collaborative scenarios between human and robotic manipulators and provides the robots
to autonomously avoid collisions during the execution of tasks. In order to accomplish
the main objective, the following specific objectives were achieved:

e study of the main algorithms based on Artificial Potential Fields for collision avoid-
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ance;

e implement in C++/Python on Robot Operating System (ROS) the techniques pro-
posed by (GE; CUI, 2000), (BYRNE; NAEEM; FERGUSON, 2013), (LUO; SU;
WANG, 2012) and (ZHANG; LIU; CHANG, 2017) to solve the APF local minima;

e evaluate the performance of the implemented techniques in simulated and real sce-
narios;

e implement orientation control techniques to the end-effector so it can achieve the
desired position to do the proposed task.

1.3 METHODOLOGY

The first stages of this work consisted in a literature review of the area with the main
objective of find research gaps and determine the state of the art of path planning algo-
rithms with obstacles avoidance. A special focus on the Artificial Potential Fields (APF)
technique.

A common problem present in path planning algorithms is the local minimum prob-
lem. This problem consists in the stagnation of the robot before it really reaches the
desired goal, that is the global minimum and can occur for several reasons, depending in
the planning method and the specific configuration and complexity of the environment
as well as the type o robot used. For the APF, for example, a type of local minimum
problem that only occurs in manipulators is the Reacharound Local Minimum Problem,
or RLMP, that consists in the inability of the manipulator to reach a goal due to the
presence of a obstacle the goal and some area of the robot.

Because of that, some local minimum problems were selected based on the literature
review and methods to solve or mitigate those problems were searched. And then the main
goal were to implement proposed methods or propose new ones either by modification of
the existing methods or creation of new ones.

This implementation took place in the Robot Operating System (ROS) (ROS.ORG,
2017) framework and with the Gazebo simulation tool. All the code was made with
Python programming language and the open source packages available within ROS. The
robot used for the experiments was the UR5, from Universal Robots (ROBOTS, 2019b)
and all the CAD models and ROS drivers are made available by the Universal Robots in
the GitHub. An example of the programming and simulation setup is depicted in figure
1.4.

The use case selected for the experiments was a approaching task of the manipulator
to a part inside a 3D printer. This approach should be made avoiding collisions with
the environment and the environment is assumed to be previously known and static.
The CAD environment was developed to reproduce the real laboratory from the Federal
University of Bahia.

After the simulated experiments were completed and validated, the experiments were
repeated in the real hardware. The results obtained will be discussed latter in this
document.
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::ROS &

GAZEBO

Figure 1.4: ROS and Gazebo interface example

1.4 MAIN CONTRIBUTIONS OF THIS WORK

Besides the present document, two main contributions of this work must be highlighted.
The implementation of the APF path planning technique with solutions to the RLMP
and GNRON local minima cases while avoiding obstacles in a 2D environtment with a
planar manipulator using ROS and Gazebo.

The generalization of the previous work with APF path planning for a 6R manipulator
(URS) in the 3D space with collision avoidance, solution fo the RLMP and GNRON local
minima cases and a orientation control technique with potential fields approach.

The results obtained during this work allowed the publication of the following scientific
papers:

e Ubiratan De Melo Pinto Junior and Maria Paula Carvalho and André Gustavo
Scolari Conceicao, 2018, Campos Potenciais Artificiais Aplicados ao Planejamento
de Trajetorias do Brago Robdtico JACO. In: Congresso Brasileiro de Automatica.
DOI: doi://10.20906 /CPS/CBA2018-0336;

e Ubiratan De Melo Pinto Junior and Caio Cristiano Barros Viturino and Andre Gus-
tavo Scolari Conceicao and Leizer Schnitman, 2020, Sistema Anticolisao Aplicado a
Manipuladores Robéticos Baseado em Campos Potenciais Artificiais. In: Anais do
14° Simpésio Brasileiro de Automagao Inteligente. Campinas : Galod. 2019. DOLI:
10.17648 /sbai-2019-111278;

e Caio Cristiano Barros Viturino and Ubiratan De Melo Pinto Junior and Andre
Gustavo Scolari Conceicao and Leizer Schnitman, 2020, Adaptive Artificial Poten-
tial Fields with Orientation Control Applied to Robotic Manipulators. Accepted for
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presentation in 21st International Federation of Automatic Control World Congress
(IFAC 2020).

1.5 ORGANIZATION OF THIS WORK

The remainder of this work is organizes as follows. Chapter 2 presents the basis of the
modeling techniques for robotics, including general movements description relative to
reference frames. In Chapter 3, an overview on some path planning algorithms based
on the Artificial Potential Fields concepts is carried out. The experimental results of
this work are presented and discussed in Chapter 4. Conclusions and future works are
provided in Chapter 5.



Chapter

MODELING

In this chapter the concepts of rigid motions, direct and inverse kinematics and path
planning techniques for robotic manipulators.

2.1 RIGID MOTIONS

Let ogxoyozo coordinate system be fixed in space. A point p can be represented in this
space in relation to the system ogzgyo2o through its coordinates in the directions x, y and
z of this axis. This representation is denoted by p°

p° = uxg + vyo + wzy =

(2.1)

INEEES SN

Likewise, the point p can be represented in space in relation to another system o,y 21
by the dot product of each of its coordinates by the system versors xi, y; and z;. As
follows:

(uxg + vyo + wzp).x1
pt = urg.w1 + vx0.7, + wre.ry = | (UTH + VYO + W2). Y1 (2.2)
(uxg + vyo + wzp).21

Similarly, the position of a 0;x;y;z; system can be represented in relation to another
0i%;y;z; system. For this, it is enough to know the coordinates of the source of o;z;y;z;,
0j, in relation to o;z;y;2;, that is, 0;'». And the ratio of angles between the versors of the
J system in relation to those of the ¢ system. Therefore, to represent the position of any
system, 7, in relation to another reference system, i, it is enough to determine the relation
of displacement, or translation, and rotation between them.

9
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2.1.1 Three-dimensional Rotation Matrices

The rotation of a system o;x,y;2; relative to a system o;x,y;2; can be represented by a
matrix, RY. It represents the projection of the system 1 versors in the system 0 versor
system versions.

T1.Zog Y1-Tog Z1.-Tg
0
Ry = |Z1.% Y% Z1-Yo (2:3)
T1.20 Yi1-20 R1-R0

20, 21

~ cosf

"~ sinf

Yo

Figure 2.1: System o;x1y;2; rotation of 6 degrees with respect to the 2, axis
(SPONG; HUTCHINSON; VIDYASAGAR, 2006)

If, for example, the o;x1y;21 system is rotated by 6 degrees with respect to the z
axis, as in the figure 2.1, the matrix RY, or Rot, g, will be given by:

cosf) —sinf 0O
R) = Rot,p = |sinf cosf 0 (2.4)
0 0 1
For convenience, hereinafter the following shorthand notation will be adopted: cosf =
cp and sinf = sg.
Similarly, it is possible to determine the rotation matrices in relation to the axes xg,
Rot, o, and yo, Rot, .

1 0 O
Roty,o =10 co —Sa (2.5)
0 s, cCq

[ ¢, 0 s,
Rot,, =1 0 1 0 (2.6)

| —Sy 0 ¢

It is also possible to compose rotation matrices. If, for example, a rotation of  degrees
with respect to the zy axis and then a rotation of a degrees with respect to the z; axis
of the 1 coordinate system are made, the resulting rotation matrix, R, will be given by:
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R = Rot,, gRoty, o (2.7)

That is, by multiplying the next rotation matrix to the right of the first rotation
matrix. However, if successive rotations are made in relation to the 0 system, or fixed,
for example, a rotation of 8 degrees with respect to the 2y axis followed by another rotation
of v degrees with respect to the axis yg, then you must multiply the second matrix on
the left of the first. The R matrix is:

R = ROtyoﬁROtZO’@ (28)

2.1.2 Three-dimensional Translation Matrices

A translation matrix, T" or 0§, represents the coordinates of the origin of a j system in
relation to a ¢ system.

T =0, =Transyq, +Transyq, +Trans, 4. (2.9)

The translation composition is made by adding the translation matrices, like this:

~[4] [o] To
T=0,=|0|+ |dy]| +]0 (2.10)
0 0 d,
. dz
o = |d, (2.11)
d.

2.2 HOMOGENEOUS TRANSFORMATIONS

Homogeneous transformations are nothing more than compact forms of representation of
rigid movements in just one matrix. A transformation matrix, H, homogeneous has the
following general form.

R3zs T30
= |:fla:5 31:(:1} (2.12)
R being a three-dimensional rotation matrix, 7' a three-dimensional translation ma-
trix, f the perspective and s the scale factor. For rigid motion applications fi,3 = [0 0 0]
and s1,; = [1]. Variations in these matrices are used mainly in computer vision applica-
tions or computer simulations.
Thus, the H matrix is as follows:

Ng Sy Gy dy
H=|" S % dy
n, s, a, d,

0 0 0 1

(2.13)
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The composition of homogeneous transformation matrices is given by the composition
of the rotation and translation parts individually so that the H matrix is then assembled.
That is, by properly multiplying the rotation matrices and adding the translation matrices
in relation to the same system.

2.3 DIRECT KINEMATICS

A robotic manipulator can be represented by a set of links, or links, connected together
through joints. These joints allow the relative movement between the links corresponding
to their nature. Joints can be simple, like the revolutionary or prismatic ones, or they can
be more complex like the ball and socket type. Revolution joints work as hinges and allow
a rotation movement in relation to a certain axis. Prismatic joints allow displacement in
relation to an axis, that is, extensions or retractions. Ball and socket joints are like the
human shoulder and allow rotation in relation to two axes. The main difference between
this type of joints is that the first two are joined with only one degree of freedom, while
the last has two degrees of freedom.

While modeling robotic systems it is possible to consider only joints with a degree of
freedom without loss of generality, since a ball and socket type joint can be modeled as
two prismatic joints joined by a zero-length link. Thus, the performance of each joint
can be represented by a real number, angle of rotation for a revolution joint and linear
displacement value for a prismatic joint. This convention will be adopted from now on.

Thus, for each joint ¢ a joint variable ¢; will be associated, such that:

d; , if the joint i is prismatic (2.14)

G = { 0; , if the joint i is of revolution
;=

For the kinematic analysis of a manipulator to be made, each ¢ link is rigidly fixed
with a o;x;y;2; coordinate system so that if the ¢ joint is actuated, the o;z;y;z; system
undergoes an equivalent movement, i.e. if the ¢ joint is prismatic and causes a d; offset,
the system will undergo a d; value translation on the joint action axis.

It is also interesting to fix a 0gzoypzo coordinate system to the base of the manipulator.
This will be the inertial system and it is in relation to it that all movements resulting from
the other systems will be expressed. The figure 2.2 shows an example of selecting systems
rigidly attached to a robotic manipulator in a convenient way for kinematic analysis.

The last system, o3x3yszs3, corresponds to the position of the manipulator’s tool (a
claw, or a welder for example) and is the position of greatest interest in the manipulator,
since it must be controlled for any activity to be carried out.

Each i system is related to the previous system, ¢ — 1, through a homogeneous trans-
formation, A;, which represents the orientation of the 7 system in relation to the ¢ — 1
system. Therefore, the matrix A; is a function of the joint variable i, ¢;, and has the
following form:

R g
Ai—{ A ] (2.15)
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Figure 2.2: Example of coordinate systems rigidly attached to a robotic manipulator

(SPONG; HUTCHINSON; VIDYASAGAR, 2006)

Where Rf_l and oﬁ_l represent the orientation and position of the o;x;y;2; system
origin in relation to the 0;_1%;_1system¥i—1%i—1, respectively.

The homogeneous transformation that relates the orientation and position of a 0;x;y;2;
system in relation to a o;x;y;2; system is called transformation matriz and is represented
as follows:

Ai_‘_lAiJ,_Q . Aj—lAj s Zf 1< j

Ti=< I , ifi=] (2.16)
(7)) , ifi>g
Thus,
Z. R o
Tyj = Ai+1Ai+2 . Aj—lAj = |: Oj 013:| (2.17)

Being the R; matrix is given by:
Rj =Rl ... Rgil (2.18)
And the coordinates vector oé- is given by:
03 = 0§-_1 + R§_10§_1 (2.19)

This way, the orientation and position of the tool of a robotic manipulator of n joints
in relation to the inertial system ogzoyozo is found by the following relation:

0 0
H= {}3” 01"} (2.20)
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H=T"=A1(q1)A2(q) ... An(qn) (2.21)

Thus, to determine the position and orientation of a robotic manipulator tool, it is
sufficient to know the values of the variables of each joint and its homogeneous transfor-
mation matrices, A;(g;).

2.3.1 Denavit-Hartenberg Convention

In order to simplify and standardize the analysis of direct kinematics, it is common to
use the Denavit-Hartenberg (DH) convention as a guide for choosing reference systems
for each link of a manipulator. The kinematic analysis of a link manipulator can be
extremely complex and this convention simplifies the analysis considerably, in addition
to providing a universal language with which engineers in the field can communicate
(SPONG; HUTCHINSON; VIDYASAGAR, 2006).

The DH convention evaluates four parameters for each link in order to determine its
A; matrix. These parameters are the length of the link, a;, the twist of the link, «;, the
offset of the link, d;, and the angle of the joint, #;. Thus, the matrix A; is expressed by a
rotation of #; on the z axis, followed by a translation of d; on the current z axis, followed
by a translation of a; on the current axis z, followed by a rotation of a; on the current x
axis. That is:

A; = Rot, g, Trans, 4, Trans, ., Rot, g, (2.22)
o, —so, 0 0][L OO0 OJLOO0 &t 0 0 0
s w0 offo 10 0010 0] |0 e —sa O (2.2
“lo 0 10[]|001 &|]|001 0[]0 sa, ca O 23
0 0O 0110 00 1710 0 0 1| (0 O 0 1
Cei _Seicai Seisai aiCGi
| Se; Cy,Ca; —Cp,;Sa; AiSg;
A = 0 5o, o, 0 (2.24)
0 0 0 1

Thus, the DH convention represents a homogeneous transformation with only four
parameters while an arbitrary homogeneous transformation is completely represented by
six parameters. This gives the DH parameter representation two degrees of freedom.
So, to guarantee the existence and uniqueness of a DH representation once the reference
systems are chosen, two considerations must be taken into account.

For two systems ogzoyozo and o121y 21, the considerations are as follows:

1. The x; axis is perpendicular to the z; axis

2. The z; axis intercepts the zy axis
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Examples of systems that obey these properties are shown in the figure 2.3. The DH
parameters for the URbH are presented in table 2.1 as described in the figure 2.4 from
(ANDERSEN, 2018).

Figure 2.3: Coordinate systems that satisfy considerations 1 and 2

(SPONG; HUTCHINSON; VIDYASAGAR, 2006)

Figure 2.4: UR5 in the zero position
(ANDERSEN, 2018)

For the URJ5, the general transformation matrix between link ¢ — 1 and ¢ is given by
the following (ANDERSEN, 2018).

cosb; —sinb; 0 ai—1
sinb;cos(a;_1) cosbicos(a;_1) —sin(a;_1) —sin(o;_1)d;
sinb;sin(a;—1) cosbisin(a;—1) cos(a;—1)  cos(ai—1)d;
0 0 0 1

i—1 _
T =

(2.25)
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w

Table 2.1: DH parameters for URS

2.4 INVERSE KINEMATICS

The inverse kinematics problem is the opposite to that of direct kinematics. Its objective
is, from the cartesian position and orientation of the manipulator tool, or final element,
to find the values of the joint variables that satisfy these conditions.

This, however, is in general a more complex problem than that of direct kinematics
as described (SPONG; HUTCHINSON; VIDYASAGAR, 2006), as it does not always
present a single solution, that is, for a given position, more than a set of values of joint
variables satisfy this condition, and the complexity of the problem increases according to
the number of joints of each manipulator. In addition, such solutions cannot always be
found analytically, requiring numerical and iterative methods for their resolution. This
precludes a single method of description and solution to the problem, which requires that
each analysis be considered on a case-by-case basis.

In (ANDERSEN, 2018), the method used to find the inverse kinematics for the URS
was the geometric approach. It calculates the joint angles based on the desired pose of
the final frame. The equations that determine the angle values are shown below.

dy
V(P + (P,

0, = atan2(Py,, Py,) & acos(

) (2.26)

0 o 0
Fg,sinty — Pg,cos01 — dy

05 = £acos( (2.27)
ds
—X$ sind, + Y$ cost), X§ sinh; — Y cosd

06 = atan2(— L 1, Oy L etk (2.28)

sinbs sinbs

Pl 12 _g2_ 42

0y = iacos(‘ drz 2@@22 ad) (2.29)

—a=5in0
0y = atan2(—P,,, —P},) — asm(%) (2.30)

dxz

04 = atan2(X3,, X3,) (2.31)

Being the positive solution in equation 2.26 shoulder left, the negative solution shoul-
der right; the positive solution in equation 2.27 wrist up and the negative solution wrist
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down; and the positive solution in equation 2.29 elbow up and the negative solution elbow
down.

In the ROS environment there is a set of packages universal-robots (ROBOTS, 2019a),
which already has implemented the inverse and direct kinematics of the UR5 manipulator.
In this study this package will be used for the control of UR5.
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PATH PLANNING

In order to robotic manipulators to perform specific tasks while avoiding collisions with
obstacles in the workspace, there are research aimed at the development of collision-free
path planning algorithms.

In this context, the path planning method by potential artificial fields (KHATIB,
1986), enables high-level control taking advantage of the environment’s feedback for real-
time and interactive applications. For these characteristics and for having an intuitive
concept of operation, this method is widely used in the path planning with diversion of
obstacles. Therefore, it will be the method applied in this study.

The trajectory planning by potential artificial fields takes into account the arrange-
ment in the cartesian space of the obstacles, the objective point and the effector, so that
through these positions a potential field is generated that will cause forces of attraction
and repulsion on the robot links and end effector whose result will define the path to be
followed until the final position.

An example of a path planning algorithm for real-time application of an anti-collision
system in manipulating and mobile robots, known as Artificial Potential Fields (APF),
was firstly proposed by (KHATIB, 1986). With the use of APFs in manipulator robots,
the links are seen as charged particles that undergo intervention of repulsive potential
fields generated by obstacles and an attractive field generated by the final, or objective,
position. Despite their efficiency, classical APF's have some restrictions or local minimum,
such as:

e Inability to reach a desired end effector orientation in case of robot manipulators.

e Failure to achieve the goal when it is within the obstacle’s influence area, a problem
known as Goals Non-Reachable with Obstacles Nearby (GNRON) (GE; CUI, 2000).
This problem occurs in mobile and manipulator robots.

e Non-convergence of the path in the positioning configurations where there are ob-
stacles near the links. The obstacle’s repulsive forces prevent the end effector

18
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from reaching the goal, problem known as Reacharound Local Minimum Problem
(RLMP) (BYRNE; NAEEM; FERGUSON, 2013). This problem occurs exclusively
in robotic manipulators.

e The generated path need post-processing in order to make it smoother.

3.1 CLASSIC ARTIFICIAL POTENTIAL FIELDS

The philosophy of this method can be described as follows.

”The manipulator moves in a field of forces. The position to be reached is an attractive
pole for the end effector and the obstacles are repulsive surfaces for the manipulator
parts.” (KHATIB, 1986)

The force field consists of the overlapping of an attractive field, Uy, (q), and a repulsive
field, Uep(q)-

U(q) = Uatt(q) + Urep(q) (3-1)

From this, the path planning can be solved in several ways. A simple algorithm for
this is planning from the minimum gradient that defines the force acting on the tool as
being.

F(q) = = v U(q) = = V Uan(q) = VUrep(q) (3-2)
And is defined in the following way.

L. Ginie = Q[O] ,1=0

2. IF [q[i] = qfina| <96
qli+1] = qli] + oy

S [F(qli])]

1=1+1
3. ELSE retorn < ¢[0] , ¢[1] , ..., q[i] >
4. GO TO 2

The value ¢[i] is the position of the end effector in the iteration i. The value alpha is
the size of the step that will be taken for each iteration. As in practice it is very unlikely
that g[i] = ¢fina it is necessary to admit a tolerance delta for the distance from the end
effector to the final point for which it is considered that the objective has been achieved.
The return values < ¢[0] ¢[1] ... ¢[i] > are the path to be followed by the manipulator.

The attractive field can be defined as follows.

Uart(q) = %CP?(C]) (3-3)

p}(q) being the Fuclidean distance between the current position of the tool, ¢, and
the objective position, ¢finq, denoted by:
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(@) = lla = gsinall (3-4)

The field has a quadratic characteristic, because for very small distances the attractive

force tends to zero with a continuous derivative. However, for very long distances, this

force can take on excessively high values, so it is interesting that after a certain distance d

the field assumes a conical behavior and increases linearly with the distance. So, a more
convenient way is.

5¢r7(q) , sepilg) <d
Uart(q) = (3-5)
d¢pr(q) — 5¢d*, se p(q) >d

The attractive force at each point will have the absolute value, orientation and direc-
tion defined by the minimum gradient, as follows.

—C(q — qfinat) > sepslq) <d

Fatt(Q) =—-V Uatt(Q) = (36)

_dC(Q*(Ifmal)
pr(a) , seplg) >d

Interesting features for the repulsive field are: growing to infinity when as the robot
approaches the obstacle and decreasing with increasing distance, p(q), between them. In
addition, in case there are several obstacles, it is interesting that each repulsive field has
an influence distance, py, from which the field becomes null and does not influence the
path of the robot. In this way the repulsive field can be defined as follows.

3 — ) » - se p(g) < po
Urep(q) = (3-7)
0 , se p(q) > po
The repulsive force at each point will have the absolute value, orientation and direction
defined by the minimum gradient of the field as follows.

e = o) z@ Ve sepr(a) < po
Frep(Q) =—V Urep(Q) = (3-8)
0 , se plq) > po
Where Vp indicates the gradient Vp(z) evaluated at x = Cj(q). If a b point in the
obstacle boundary in the workspace is close to the repulsive field of a control point in the
robot, then Vp = ||¢;(¢) — b|| and its gradient is represented by:
a;(q) —b
Vp(z)| = L~ (3-9)
= T =
The forces acting on the robot are summed and applied to each joint ¢ through the

transposed Jacobian to obtain the necessary torque to move the joints. The total artificial
joint torque acting on the arm is defined as:

7(q) = Z JF () Faei(a) + Z T () Frepi(q) (3.10)
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3.2 ADAPTATIVE ARTIFICIAL POTENTIAL FIELDS

To eliminate GNRON problems present in classical APFs, (ZHANG; LIU; CHANG, 2017)
developed the AAPF. The repulsive field of AAPFs is represented by

2
1o (L_ 1\ . <
Ureplq) = 4 2 (b=%) w8 & r=m (3.11)
0 ;P> po

where p, is the distance from the joint to the goal and n > 0.

In (3.11), when n = 1 and the robot is far from the target, that is, pj > 1, then
py/(1py) ~ 1 and the repulsive fields of AAPFs are equivalent to the repulsive fields of
APFs, avoiding the path from increasing as the distance to the target increases. When the
robot is near the goal, i.e. py < 1, the expression py/(1py) is equivalent to approximately
Pg-

In AAPF, the repulsive force is fragmented into two other components, which draw
the robot to the target and repel it from the obstacle even though it is positioned within
the area of influence pg, that is,

Fre fYOR_FFreQrYRG ; pSPO
RM@z{ " ! (3.12)

0 ;P> o

where the unit vector yor = Vp(q, qops) indicates the direction from the obstacle to
the robot control point and Yre = —Vp(q, ¢goa) indicates the robot’s direction to the
goal.

The F,.p component, represented by:

1 1 o
F.. :w¢<————)——4L—— 3-13)
Ve po) (L) (

repels robot from the obstacle and the F,.,» component, represented by:

n 1 1 2 pnfl
et (1LY »
o2V \p op) (L4 pp)?

draws the robot to the goal.

Figure 3.1 shows the attractive and repulsive AAPF force components. The total
force generated from the AAPF guides the robot end effector to the goal, represented
by the green circumference. For this method to work in real situations, the shape of the
object must be filled with spheres representing repulsive fields, as shown in figure 4.2.

So that only the end effector, and not the other links, can reach a position within the
obstacle’s field of influence, AAPFs were applied only to the last link, while the other
links remain using the APFs. This ensures that the other links do not enter the obstacle’s
influence area.
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Figure 3.1: AAPF attractive and repulsive force components.

3.3 ORIENTATION CONTROL

The APF was also implemented in configuration space in order to control the orientation
of the end effector through all the trajectory. The initial end effector orientation ¢,
corresponding to Roll, Pitch and Yaw angles, is set equal to the grasping orientation
qfinai for the robot to keep current set orientation while it is moving. The attractive force
in configuration space is given by

Fattw (Q) = _VUatt(q)

(g = qpima) 5 prle) <d L
o= go) (3.15)
ps(q) - prla) >

where p(g) is the distance from ¢ to gfina and d is defined as the influence distance
to the final orientation in radians. Fig. 3.2 shows the UR5 base link frame and the end
effector frame. The axis z;,y; and z; of the end effector frame f,, gets attracted by the
axis x;_1,y;—1 and z;_; of the URS base link frame f,, in configuration space.

To implement the end effector orientation control, the Jacobian matrix was divided
into linear Jacobian J, (the submatrix formed by the three first rows of the Jacobian
matrix) and angular Jacobian J, (the submatrix formed by the three last rows of the
Jacobian matrix), each one having 3 x ¢ dimension (for this work, ¢ = 6 and the control
points are the UR5 joints), as described in (3.16).

_ Jv3><c
Jc><c - |:Jw3><c:| (316>

The attractive forces of each control point ¢ in configuration space are transformed
into joint torque through the transposed angular Jacobian J!, where J; is the Jacobian

W,
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Base link frame f;. End effector frame f;,
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Figure 3.2: Reference frame of the UR5 base link and end effector.

matrix from the base frame to the i** joint. The total artificial joint torque acting on the
arm is defined as:

T(Q) = F, ( + sz Z attw )+

Z att ’L Z T€P7 )

where, i represents the " joint. The force F,;(¢) is equivalent to the attractive
force in configuration space imposed to the joints, so the end effector’s orientation keeps
constant, and F,;(q) is the resulting force in the workspace.

(3-17)
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EXPERIMENTAL RESULTS

4.1 THE SETUP

All the experiments were made in a smart robotic additive manufacturing (SRAM) cell
being made of an UR5 robot manipulator, from Universal Robots, and a 3D printer
controlled by ROS. This cell can be used for several applications in the context of collab-
orative robotics and industry 4.0 such as, pick and place tasks in dynamic environments,
interface with cloud services for information exchange and data logging, integration with
discrete IOT devices for environment statuses (temperature, humidity, presence sensing
etc), among other examples, as can be seen in (COSTA et al., 2020). The experiments
made for this work are an approach task the a 3D printed part (goal) while avoiding
collision with obstacles (3D printer) planned autonomously with previous knowledge of
the environment and considering it static.

The devices of the cell are disposed as shown in figure 4.1. The URS5 is right in front
of the 3D printer opening so parts can be more easily picked from the printer tray.

A virtual model of the cell is made and simulated on Gazebo software. This model
is composed of CAD models of the UR5 and the 3D printer. But, as the proposed
algorithm is a path planner with obstacle avoidance, the important information about
the environment are: the position the robot or its joint states, the position of the goal and
the position of the obstacles. As working with complex CAD models all the time have
a high computational cost, all the input information for the algorithm can be simplified
from the previous knowledge the the 3D printer and robot shapes and position. So, it
is possible to model the goal, the 3D printed part, as a simple sphere. The obstacle,
the 3D printer, can be simplified by the most probable parts that can be collided in this
task: the front face and the tray. So the obstacle can be modelled as a set of 12 spheres
of the same size placed equally spaced in the 3D printer front face and a bigger sphere
representing the printer tray. The sphere representing the tray in involving the goal, so
the attractive force from the goal won’t drag the end-effector in the tray direction. The
simplified model used as input for the presented algorithm can be seen in figure 4.2 side
by side with the real cell image.

24
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Figure 4.1: SRAM Cell

The AAPF method was applied only to the tray obstacle to avoid collisions with the
outer parts of the printer. Thus the other obstacles repulsive forces stay the same as the
classic APF. Similarly, to avoid collisions with the manipulator’s links, the AAPF method
was applied only to the grasping control point. Therefore, the other control points will
never try to enter an obstacle influence area. These considerations make the technique
application less likely to cause accidental collisions in the printer inner area.

All the code used in this work in available at (https://github.com/caiobarrosv/Project_
IFAC_2020) and the videos from the experiment can be seen at (https://www.youtube.
com/watch?v=9d71BqTH_JA).

4.2 THE OBJECTIVE OF THE PROPOSED ALGORITHM

As already mentioned, the experiments made for this work are approach activities i.e.,
they consist in the movement of the manipulator from a far position from the goal, where
a typical pick task can’t be performed, to a closer position to the goal, so it becomes
possible. The pick task, not proposed in this work, can be computer vision assisted, using
cameras, cloud point sensor or others, and it handles a much more shorter movements
than the presented algorithm.

A pick task has the main objective to provide a reliable, stable and force precision
grip with an specific end-effector tool so an object can be translated between two points,
or oriented accordingly with an certain need. This implies in small and slow moves, in
the order of centimeter, millimeters or even smaller magnitudes. Due to this required
precision, to be executed, a pick task needs a set of sensors and a good initial position.

An approach task, on the other hand, is responsible to move the manipulator between
two greater regions in its workspace. This movement generally don’t need to be extremely
precise, instead it can be more quick and wide, in the order of centimeters or meters, so
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(a) Real cell (b) Virtual model

Figure 4.2: Experiment arrange showing (a) the UR5 manipulator, the 3D printer and
(b) the simulated environment.

the robot can reach an area where another finer tuned control, but with a short range of
action, can take place and be used by the application.

The proposed algorithm in this work lies in the second category. It is an approach
algorithm that aims to autonomously move the manipulator from a Home position, far
from the 3D printer, to a much closer position where another control can be used in a
pick task. Besides simply move the robot, the algorithm also has the capability to avoid
collision with obstacles in the environment with previously known position and set a
goal orientation for the end-effector tool, so the tool can safely enter the printer and a
computer vision assisted control can be easily applied in the grasping of the 3D printed
part.

The algorithm works offline, that is, it calculates the path to be followed previously
to the start of the movement with the knowledge of the environment and it considers no
change will be made in the objects besides the robot. Then, the robot follows the path
calculated until it reaches the last point. The stop condition for the path planning is the
distance to the goal, it must be 3mm or less, or, as this method not always converge to
a solution, a determined number of iterations, in this case, 1500 iterations.

4.3 THE EXPERIMENTS

For the three experiments that will be presented next (AAPF and APF with orientation
control, and AAPF without orientation control), in all the cases the UR5 starts from the
same position (the one shown in figure 4.2 a), it must reach the same goal (the part inside
the 3D printer) and the environment has the same configuration all the time (as shown
in figure 4.2 a and modelled as shown in figure 4.2 b). The initial end-effector orientation
is also different from the final goal orientation. Additionally, as the APF algorithm has
the objective to provide a solution for a path between two points, the picking task is not
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Figure 4.3: Comparison of the distance from UR5 end effector to the goal using APF and
AAPF with orientation control and AAPF without orientation control

in the scope of this work, but only the approach to the goal task. Such tasks as pick
and place are suitable to be solved by visual assisted algorithms for this purpose and not
path planning algorithms. Following every experiment will be discussed in detail.

4.3.1 Distance to the Goal Comparison

In figure 4.3 is presented a plot of the distance of the end-effector tool to the goal for all
the path planned by the three algorithms. The main stop condition for this path planning
algorithm is the distance to the goal. If the minimal distance to the goal can be achieved
and how fast it can be achieved is a measurement of the success of this method. It is
possible to see that the AAPF method with orientation control is the only method that
converges to the goal. The two other methods were not able to converge to a solution
and stopped due to the number of iterations.

Even so the AAPF can enter the repulsive fields, the orientation at the moment of the
approach plays an important role in the convergence of the algorithm. This is because the
oppening in the 3D printer is so narrow that any orientation much different from the goal
orientation will not allow the tool to safely enter the printer. And as the final orientation
cannot be reliably predicted without the orientation control, the success of this method
is then uncertain as it is susceptible to other local minimum problems than GNRON. So
by not entering the 3D printer, the AAPF without orientation control doesn’t differ from
the APF in overall results. Added to that, the APF with orientation control proves to be
inefficient too, once the inability to enter obstacles repulsive fields lets the end-effector
outside the printer and it cannot reach the goal.

Another interesting characteristic that can be seen is that the beginning of all the
paths is identical. More specifically, the path where the distance to the goal is 0.3m or
greater. This is the obstacle-free portion of the path, when the manipulator is relatively
far from the obstacles, so the resulting force of the AAPF method becomes equal to the
one from the APF method, as expected. When the arm gets closer to the obstacles, the
repulsive forces are different and so the resultant force. This way, the paths start to differ
from each other.
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4.3.2 Adaptative Artificial Potential Fields with Orientation Control

The figure 4.4 shows some sequential photos from the experiment in the real UR5 for the
case of application of the AAPF with orientation control technique. From the images it
is possible to see that the end effector manages to enter the interior of the 3D printer and
reach the goal avoiding collisions with the printer front and interior sides.

By seeing the end-effector orientation, it can be noticed that the goal orientation was
also achieved and it was gradually corrected during all the trajectory executed by the
manipulator.

The analysis of figures 4.7 and 4.8 shows that the attractive and repulsive forces for
all joints tends to zero at the end of the trajectory. This means that the net force making
the joints move is zero and this indicates a minimum of the potential field, and the forces
absolute value being null indicate that this minimum is a global minimum, thus the goal
was reached.

The joints movement in figure 4.9 show the smoothness of the manipulator movement,
so the robot had a good behaviour during all the trajectory and this is reflected in the
forces graph too.

4.3.3 Artificial Potential Fields with Orientation Control

In similar way, figure 4.5 shows sequential images for the APF with orientation control
experiment. Unlinke the previous case, it is possible to see that the end-effector cannot
approach the goal. This is clearly seen in figures 4.7 and 4.8 as the repulsive force
presents a persistent oscillatory behaviour. This happens because of the inability of the
end-effector the penetrate obstacles influence area, exclusive feature of the AAPF method.

This continues to occur indefinitely, proving that the algorithm don’t converge in this
case. The number of iterations, roughly the double than the previous experiment, is
another indicator of the fail to reach the goal and meet the first performance.

Although the end-effector orientation is gradually corrected during the trajectory, the
goal pose is never reached as the joints goal is never approached.

This experiments proves the importance of the AAPF ability to penetrate safely in
obstacles influence areas in narrow environments.

4.3.4 Adaptative Artificial Potential Fields without Orientation Control

Finally, the figure 4.6 shows sequential images for the AAPF without orientation control
experiment. Is easy to see that this was the worst case from all experiments.

Is possible to see that the lack of orientation control makes impossible to the AAPF
to find and adequate approach pose for the task. In a case like this, a good approach ori-
entation would only occur randomly. Without this orientation it can be seen form figures
4.7 and 4.8 that the force reach a stable state at non-zero absolute values, indicating that
this is a local minimum and the arm will not progress anymore and can’t reach the goal.

It’s also clearly seen that the end-effector orientation stays unchanged during all the
trajectory indicating the lack of orientation control. This proves the importance of the
orientation control method for cases where the approach is constrained.
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Figure 4.4: AAPF with orientation control method applied on real scenario
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Figure 4.5: APF with orientation control method applied on a real scenario
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Figure 4.6: AAPF without orientation control method applied on a real scenario
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Chapter

CONCLUSIONS

The collaborative robotics is a trend in the industry and, in this context, the environments
in which the robots are being applied are increasingly more complex and dynamic. Thus
manual and ad hoc solutions become not suitable for those scenarios and autonomous
robots with real-time algorithms with fast response times becomes very important solu-
tions. The methods proposed in this work are examples of this kind of algorithms that
make possible the safe interaction among robots, humans and environment.

A novel method for end-effector orientation control which allows reaching a desired
tool pose using the Jacobian matrix is presented. Results show that the desired final pose
is achieved, but it only occurs in the final iterations of the planned path as the orientation
is continually corrected along with all the other parts of the manipulator. This, in some
cases, can cause problems to reach the final goal depending mainly in the initial robot
position and type of area that must be reached. Prioritization of the tool orientation
relative to the other joints can be a solution in some cases and also the intermediate pose
goals selection that takes the tool to appropriate positions in some parts of the path in
a way to ease the robot movement depending on the environment.

The typical local minimum problem GNRON is addressed and avoided by the imple-
mentation of the AAPF algorithm. It was shown that the use of this method reduces the
jitter in narrow areas and allow the end-effector to reach the goal even if it is inside the
obstacle influence area.

Even though the experimental results show positive results, the current method plans
the path prior to the movement execution. Thus, the environment is assumed to be
static. This way further improvements must be made so the robot can react to dynamic
environments. This can be achieved by computer vision techniques for autonomous goals
and obstacles recognition and modelling.

Also, the gain tuning can be an issue for this technique. Static gains were used for all
the experiments made and they were determined empirically. Automatic and adaptative
gain tuning can be applied so the performance can be improved. Other solutions to
improve the APF planner performance is to use it with other techniques such as genetic
algorithms, fuzzy logic and other.

35






BIBLIOGRAPHY

AKBARIPOUR, H.; MASEHIAN, E. Semi-lazy probabilistic roadmap: a parameter-
tuned, resilient and robust path planning method for manipulator robots. The Interna-

tional Journal of Advanced Manufacturing Technology, Springer, v. 89, n. 5-8, p. 1401—
1430, 2017.

ANDERSEN, R. S. Kinematics of a UR5. 2018. (http://rasmusan.blog.aau.dk/files/ur5_
kinematics.pdf). Accessed: 2020-12-09.

BYRNE, S.; NAEEM, W.; FERGUSON, S. An intelligent configuration-sampling based
local motion planner for robotic manipulators. In: IEEE. 9th International Workshop on
Robot Motion and Control. [S.1.], 2013. p. 147-153.

COSTA, F. S.; NASSAR, S. M.; GUSMEROLI, S.; SCHULTZ, R.; CONCEI¢aO, A.
G. S.; XAVIER, M.; HESSEL, F.; DANTAS, M. A. R. Fasten iiot: An open real-time
platform for vertical, horizontal and end-to-end integration. Sensors, v. 20, n. 19, 2020.
ISSN 1424-8220. Disponivel em: (https://www.mdpi.com/1424-8220/20/19/5499).

GE, S. S.; CUI, Y. J. New potential functions for mobile robot path planning. IFEFE
Transactions on robotics and automation, IEEE, v. 16, n. 5, p. 615-620, 2000.

GUALTIERI, L.; RAUCH, E.; VIDONI, R. Emerging research fields in safety and er-
gonomics in industrial collaborative robotics: A systematic literature review. Robotics and
Computer-Integrated Manufacturing, v. 67, p. 101998, 2021. ISSN 0736-5845. Disponivel
em: (http://www.sciencedirect.com/science/article/pii/S073658452030209X).

HOLDOWSKY, J.; MAHTO, M.; RAYNOR, M.; COTTELEER, M. Inside the internet
of things: A primer on the technologies building the iot. Deloitte University Press, 2015.

Isenberg, D. R. A potential field inspired approach to attitude motion planning with
unit-quaternions. In: SoutheastCon 2017. [S.1.: s.n.], 2017. p. 1-T7.

Kar, A. K.; Dhar, N. K.; Nawaz, S. S. F.; Chandola, R.; Verma, N. K. Automated guided
vehicle navigation with obstacle avoidance in normal and guided environments. In: 2016
11th International Conference on Industrial and Information Systems (ICIIS). [S.1.: s.n.],
2016. p. 77-82.

KHATIB, O. Real-time obstacle avoidance for manipulators and mobile robots. In: Au-
tonomous robot vehicles. [S.1.]: Springer, 1986. p. 396-404.

37



38 BIBLIOGRAPHY

KIM, Y. H.; SON, W.-S.; PARK, J. B.; YOON, T. S. Smooth path planning by fusion
of artificial potential field method and collision cone approach. In: EDP SCIENCES.
MATEC Web of Conferences. [S.1.], 2016. v. 75, p. 05004.

LI, G.; TONG, S.; CONG, F.; YAMASHITA, A.; ASAMA, H. Improved artificial poten-
tial field-based simultaneous forward search method for robot path planning in complex
environment. In: IEEE. 2015 IEEE/SICE International Symposium on System Integra-
tion (SII). [S.1], 2015. p. 760-765.

LUO, J.; SU, W.; WANG, D. The improvement of the artificial potential field robot path
planning based on 3-d space. In: IET. International Conference on Automatic Control
and Artificial Intelligence (ACAI 2012). [S.1.], 2012. p. 2128-2131.

OLSEN, T. L.; TOMLIN, B. Industry 4.0: Opportunities and challenges for operations
management. Available at SSRN: https://ssrn.com/abstract=3365733, 2019.

PATLE, B.; Babu L, G.; PANDEY, A.; PARHI, D.; JAGADEESH, A. A review: On path
planning strategies for navigation of mobile robot. Defence Technology, v. 15, n. 4, p. 582
— 606, 2019. ISSN 2214-9147. Disponivel em: (http://www.sciencedirect.com/science/
article/pii/S2214914718305130).

Quiroz-Omana, J. J.; Adorno, B. V. Whole-body control with (self) collision avoidance
using vector field inequalities. IEEE Robotics and Automation Letters, v. 4, n. 4, p. 4048—
4053, Oct 2019.

ROBOTS, U. universal-robot ROS package. 2019. (https://github.com/ros-industrial/
universal robot). Accessed: 2020-12-09.

ROBOTS, U. URS5 collaborative robot arm — flexible and lightweight robot arm. 2019.
(https://www.universal-robots.com/products/urb-robot/). Accessed: 2019-10-15.

ROS.ORG. ROS Website. 2017. Disponivel em: (http://www.ros.org).

SAFEEA M., B. R. . N. P. Collision avoidance of redundant robotic manipulators using
newton’s method. J Intell Robot Syst, v. 99, p. 673-681, 2020.

SINTOV, A. Goal state driven trajectory optimization. Auton Robot, v. 43, p. 631-648,
2019.

SPONG, M. W.; HUTCHINSON, S.; VIDYASAGAR, M. Robot modeling and control.
[S.1.]: wiley New York, 2006.

XIN, G.; QINGXUAN, J.; HANXU, S.; GANG, C.; QIANRU, Z.; YUKUN, Y. Real-time
dynamic system to path tracking and collision avoidance for redundant robotic arms. The
Journal of China Universities of Posts and Telecommunications, v. 23, n. 1, p. 73 — 96,
2016. ISSN 1005-8885. Disponivel em: (http://www.sciencedirect.com/science/article/
pii/S1005888516600110).



BIBLIOGRAPHY 39

Zahroof, T.; Bylard, A.; Shageer, H.; Pavone, M. Perception-constrained robot manip-
ulator planning for satellite servicing. In: 2019 IEEE Aerospace Conference. [S.1.: sn.],
2019. p. 1-10.

Zhang, H.; Wang, Y.; Zheng, J.; Yu, J. Path planning of industrial robot based on
improved rrt algorithm in complex environments. IEEE Access, v. 6, p. 53296-53306,
2018.

ZHANG, Y.; LIU, Z.; CHANG, L. A new adaptive artificial potential field and rolling
window method for mobile robot path planning. In: TIEEE. 2017 29th Chinese Control
And Decision Conference (CCDC). [S.1.], 2017. p. 7144-7148.



APPENDIX A

MAIN CODE

#!/usr/bin/env python

# ROS import

import sys

import rospy

import tf

from tf.transformations import quaternion_from_euler, euler_from_matrix,
euler_from_quaternion #, quaternion_matrix

from tf import TransformListener, TransformerROS

import actionlib

# Moveit Import

import moveit_commander

from moveit_python import *

# from moveit_commander.conversions import pose_to_list

# Msg Import

from moveit_msgs.msg import *

# from geometry_msgs.msg import *

from geometry_msgs.msg import PoseStamped, Point, Vector3, Pose
from std_msgs.msg import String, Header, ColorRGBA, Float64
from visualization_msgs.msg import Marker

from shape_msgs.msg import SolidPrimitive

from sensor_msgs.msg import JointState

from control_msgs.msg import *

from trajectory_msgs.msg import *

# Inverse Kinematics Import
from ur_inverse_kinematics import *

# Python Import

import numpy as np

from numpy import array, dot, pi
from numpy.linalg import det, norm
import csv

import argparse

import time

from itertools import izip_longest
import matplotlib.pyplot as plt
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# Customized code

from get_geometric_jacobian import *
from get_ur5_position import *

from get_dist3D import *

import CPA

from CPA import *

from smooth_path import =*

def get_param(name, value=None):
private = "7Ys" 7 name
if rospy.has_param(private):
return rospy.get_param(private)
elif rospy.has_param(name) :
return rospy.get_param(name)
else:
return value

PARSE ARGS

def parse_args(Q):

parser = argparse.ArgumentParser(description=’AAPF_Orientation’)

# store_false assumes that variable is already true and is only set to
false if is given in command terminal

parser.add_argument (’--AAPF’, action=’store_true’, help=’Choose AAPF
instead of APF’)

parser.add_argument (’--APF’, action=’store_true’, help=’Choose APF instead
of AAPF’)

parser.add_argument (’--0riON’, action=’store_true’, help=’Activate
Orientation Control’)

parser.add_argument (’--COMP’, action=’store_true’, help=’Compares distance
to goal using APF, AAPF w/ and without ori control’)

parser.add_argument (’--CSV’, action=’store_true’, help=’Write topics into
a CSV file’)

parser.add_argument (’--plot’, action=’store_true’, help=’Plot path to RVIZ
through publish_trajectory.py (run this node first)’)

parser.add_argument (’--plotPath’, action=’store_true’, help=’Plot path to
RVIZ through publish_trajectory.py (run this node first)’)

parser.add_argument (’--realUR5’, action=’store_true’, help=’Enable real
UR5 controlling’)

args = parser.parse_args()

return args

def print_joint_angles(args, vec, file, type):
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with
open(’/home/caio/3_Projetos_UR5/Project_IFAC_2019/src/custom_codes/csv_files/’
+ file + ’.csv’, mode=’w’) as employee_file:

employee_writer = csv.writer(employee_file, delimiter=’ ’,
quotechar=""’, quoting=csv.QUOTE_MINIMAL)
if type == ’joint’:
employee_writer.writerow([’Index’, ’Jointl’, ’Joint2’, ’Joint3’,
>Joint4’, ’Jointb5’, ’Joint6°])
n=20

for position in vec:

employee_writer.writerow([n, position[0], position[1],
position[2], position[3], position[4], position[5]])
n+=1
elif type == ’dist_to_goal’ and args.COMP:

employee_writer.writerow([’Index’, ’dist_to_goal_ AAPF_Q0riON’,
’dist_to_goal APF_0riON’, ’dist_to_goal _AAPF_Q0riOFF’])

new_vecl [x[0] for x in vec[0]]

new_vec2 = [x[0] for x in vec[1]]

new_vec3 = [x[0] for x in vec[2]]

new_index = [x for x in range(max(len(vec[0]),len(vec[1])))]

rows = izip_longest(new_index, new_vecl, new_vec2, new_vec3,

fillvalue=’nan’)
employee_writer.writerows(rows)

elif type == ’dist_to_goal’:
employee_writer.writerow([’Index’, ’dist_to_goal’])
n=20

for dist in vec:
employee_writer.writerow([n, dist[0]])

n+=1
elif type == ’euler_angles’:
employee_writer.writerow([’Index’, ’Roll’, ’Pitch’, ’Yaw’])

roll, pitch, yaw = zip(*vec)

new_index = [x for x in range(len(roll))]

rows = izip_longest(new_index, roll, pitch, yaw, fillvalue=’nan’)
employee_writer.writerows (rows)

def print_output(n, way_points, wayPointsSmoothed, dist_EOF_to_Goal):
print("Dados dos CPAAs")

print("Iterations: ", n)

print("Way points: ", len(way_points))

print("Way points smoothed: ", len(wayPointsSmoothed))
print("Distance to goal: ", dist_EOF_to_Goal)

class MoveGroupPythonIntefaceTutorial(object):
"""MoveGroupPythonIntefaceTutorial"""

def __init__(self, args):
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super (MoveGroupPythonIntefaceTutorial, self).__init__Q)

moveit_commander.roscpp_initialize(sys.argv)
rospy.init_node(’move_group_python_interface_urb5_robot’,
anonymous=True)

# self.display_trajectory_publisher =
rospy.Publisher (’/move_group/display_planned_path’,
#
moveit_msgs.msg.DisplayTrajectory,
# queue_size=20)

self .pose = PoseStamped()

# publish path or trajectory to publish_trajectory.py

self.pose_publisher = rospy.Publisher(’pose_publisher_tp’,
PoseStamped, queue_size=10)

# Topico para publicar marcadores para o Rviz
self .marker_publisher = rospy.Publisher(’visualization_marker2’,
Marker, queue_size=100)

self.tf = tf.TransformListener()
self.scene = PlanningScenelInterface("base_link")
self .marker = Marker ()
self.joint_states = JointState()
self.joint_states.name = [’shoulder_pan_joint’, ’shoulder_lift_joint’,
’elbow_joint’, ’wrist_1_joint’, ’wrist_2_joint’,
‘wrist_3_joint’]

# d1, SO, EO, a2, a3, d4, d45, d5, dé6
self.urb_param = (0.089159, 0.13585, -0.1197, 0.425,
0.39225, 0.10915, 0.093, 0.09465, 0.0823 + 0.15)

# Plot path inside while loop
self.plot_path = True

self.n =1

self.id = 100

self.id2 = 130

self.id_path = 200

self.path_color = ColorRGBA(0.0, 0.0, 0.1, 0.8)
self.diam_goal = [0.05]

self.ptFinal = [[0.55, 0.0, 0.55]]

self.client =
actionlib.SimpleActionClient (’arm_controller/follow_joint_trajectory’,
FollowJointTrajectoryAction)
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print "Waiting for server (gazebo)..."
self.client.wait_for_server()
print "Connected to server (gazebo)"

# Obstacle positions
oc = [-0.86, 0, 0.375] # Obstacle reference point - 3D printer
dl = -0.080
s =1
self.obs_pos = [oc, np.add(oc, [s * 0.14, 0.0925, 0.255 + d1]),
np.add(oc, [s * 0.14, 0.185, 0.255 + d1]), np.add(oc, [s * 0.14, O,
0.255 + d1]), np.add(oc, [s * 0.14, -0.0925, 0.255 + d1]),
np.add(oc, [s * 0.14, -0.185, 0.255 + d1i]),
np.add(oc, [s * 0.14, -0.185, 0.16 + d1]), np.add(oc, [s *
0.14, 0.185, 0.16 + d11), np.add(oc, [s * 0.14, 0.0925,
0.05 + d1]), np.add(oc, [s * 0.14, 0.185, 0.05 + di]),
np.add(oc, [s * 0.14, 0, 0.05 + di]),
np.add(oc, [s * 0.14, -0.0925, 0.05 + d1]), np.add(oc, [s *
0.14, -0.185, 0.05 + d1]1)]
self.diam_obs = [0.18] * len(self.obs_pos) # Main obstacle repulsive
field
self.diam_obs[0] = 0.3
self.add_sphere(self.obs_pos, self.diam_obs, ColorRGBA(1.0, 0.0, 0.0,
0.3))

# CPA PARAMETERS
self.eta = [0.00001 for i in range(6)] # Repulsive gain of each
obstacle default: 0.00006

if args.realURb:
self.clientreal =
actionlib.SimpleActionClient(’follow_joint_trajectory’,
FollowJointTrajectoryAction)
print "Waiting for server (real)..."
self.clientreal.wait_for_server()
print "Connected to server (real)"

TH Matrix from joint angles

def matrix_from_joint_angles(self):
thl, th2, th3, th4, thb5, th6 = self.joint_states.position
d1, SO, EO, a2, a3, d4, d45, d5, d6 = self.urb_param

matrix = [[-(sin(th1l)*sin(th5) + cos(thl)*cos(thb)*cos(th2 + th3 +
th4))*cos(th6) + sin(th6)*sin(th2 + th3 + th4)*cos(thl),
(sin(th1)*sin(th5) + cos(thl)*cos(th5)*cos(th2 + th3 +
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th4))*sin(th6) + sin(th2 + th3 + th4)*cos(thl)*cos(th6),
-sin(th1l)*cos(th5) + sin(th5)*cos(thl)*cos(th2 + th3 + th4),
-E0*sin(th1) - SO*sin(thl) + a2*cos(thl)*cos(th2) +
a3*cos(thl)*cos(th2 + th3) - d45*sin(thl) - d5*sin(th2 + th3 +
th4)*cos(thl) - d6*(sin(th1)*cos(th5) -
sin(thb5)*cos(thl)*cos(th2 + th3 + th4))],
[-(sin(thl)*cos(th5)*cos(th2 + th3 + th4) -
sin(th5)*cos(thl))*cos(th6) + sin(thl)*sin(th6)*sin(th2 + th3 +
th4), (sin(thl)*cos(th5)*cos(th2 + th3 + th4) -
sin(th5)*cos(thl))*sin(th6) + sin(th1l)*sin(th2 + th3 +
th4)*cos(th6), sin(thl)*sin(th5)*cos(th2 + th3 + th4) +
cos(thl)*cos(th5), EO*cos(thl) + SO*cos(thl) +

a2*sin(thl) *cos(th2) + a3*sin(thl)*cos(th2 + th3) +
d45%cos(thl) - db5*sin(th1)*sin(th2 + th3 + th4) +

d6* (sin(th1)*sin(thb5)*cos(th2 + th3 + th4) +
cos(thl)*cos(th5))], [sin(th6)*cos(th2 + th3 + th4) + sin(th2 +
th3 + th4)*cos(th5)*cos(th6), -sin(th6)*sin(th2 + th3 +

th4) *cos(th5) + cos(th6)*cos(th2 + th3 + th4),
-sin(th5)*sin(th2 + th3 + th4), -a2*sin(th2) - a3*sin(th2 +
th3) + d1 - dbxcos(th2 + th3 + th4) - d6*sin(th5)*sin(th2 + th3
+ th4)], [0, O, O, 1]1]

return matrix

Also gets each frame position through lookupTransform

def get_repulsive_cp(self, obs_pos, joint_values, CP_ur5_rep):

Get control point positions

:param CP_urb5_rep: repulsive fields diameter on URS

:param joint_values: joint angles

:param obs_pos: position of each obstacle

:return: Control point positions and dist from each control point to

each osbtacle

marker_lines = Marker()

ur5_links = [

"upper_arm_link",
"forearm_link",
"wrist_1_1link",
"wrist_2_1link",
"wrist_3_link",
"grasping_link"
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CP_pos, CP_dist = [1, []

for i in range(len(ur5_links)):
link_position = get_urb5_position(self.urb5_param, joint_values,
urb_links[i])

CP_pos.

append(link_position)

CP_inter = []

# self.add_sphere2(link_position, CP_urb5_rep[i], ColorRGBA(1.0,

0.0, 0.0, 0.2)) # Plot URb repulsive fields

# Calculates distance from link position to each obstacle and
store it in CP_dist

for y in range(len(obs_pos)):

CP_inter.append(np.linalg.norm(link_position - obs_pos[y]))

CP_dist.append (CP_inter)
return CP_pos, CP_dist

Adds the obstacles and repulsive control points on the robot

def add_sphere(self, pose, diam, color):
marker = Marker ()
marker.header.frame_id = "base_link"
for i in range(len(pose)):

marker.
marker.
marker.
marker.
marker.
marker.

id = self.id

MAIN CODE

pose.position = Point(pose[i] [0], posel[i] [1], posel[il[2])

type = marker.SPHERE

action = marker.ADD

scale = Vector3(diam[i], diam[i], diam[i])
color = color

self .marker_publisher.publish(marker)
self.id += 1

This function plot URS5 Repulsive Fields

def add_sphere2(self, pose, diam, color):
marker = Marker()
if self.id2 == 137:
self.id2 = 130
marker.header.frame_id = "base_link"

marker.id

= self.id2

marker.pose.position = Point(pose[0], posel[l], posel[2])
marker.type = marker.SPHERE
marker.action = marker.MODIFY
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Add

def

Vector3(diam, diam, diam)
marker.color = color

self .marker_publisher.publish(marker)
self.id2 += 1

marker.scale

Cylinder pose

add_obstacles(self, name, height, radius, pose, orientation, r, g, b):
scene = self.scene

# addCylinder (self, name, height, radius, x, y, z, use_service=True)
s = SolidPrimitive()

s.dimensions = [height, radius] # [height, radius]

s.type = s.CYLINDER

ps = Pose()

# ps.header.frame_id = "cylinderl"

ps.position.x = posel[0]

ps.position.y = posel[1]

ps.position.z = pose[2]

X, ¥, 2, w = quaternion_from_euler(orientation[0], orientation[1],
orientation([2])

ps.orientation.x = x
ps.orientation.y =y
ps.orientation.z = z
ps.orientation.w = w

scene.addSolidPrimitive(name, s, ps)
scene.setColor(name, r, g, b)

Plot robot’s path to the RViz environment

def

visualize_path_planned(self, path, G = 1.0, B = 0.0):

self .marker.points.append(Point (path[0], path[1], path[2]))
self .marker.header.frame_id = "base_link"

self .marker.id = self.id_path

self .marker.type = self.marker.LINE_STRIP

self .marker.action = self.marker.ADD

self .marker.scale = Vector3(0.008, 0.009, 0.1)

self .marker.color = self.path_color

self .marker_publisher.publish(self.marker)

Send final trajectory to gazebo or real URS
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def move(self, way_points, target):
g = FollowJointTrajectoryGoal ()
g.trajectory = JointTrajectory()
g.trajectory.joint_names = self.joint_states.name

# for joint in range(len(way_points)):
hz = get_param("rate", 30) # 10hz
r = rospy.Rate(hz)

try:
i=0
while not rospy.is_shutdown() and i < len(way_points):
g.trajectory.points.append(JointTrajectoryPoint (positions=way_points[i],
velocities=[0] * 6,
time_from_start=rospy.Duration(0.05

* 1+ 5)))
#default 0.1*i +
5
i+=1
if target == "gazebo":

self.client.send_goal(g)
self.client.wait_for_result()
elif target == "real":
self.clientreal.send_goal(g)
self.clientreal.wait_for_result()

except KeyboardInterrupt:
self.client.cancel_goal()
self.clientreal.cancel_goal()
raise

except:
raise

def CPA_loop(self, args, way_points, R, P, Y, AAPF_COMP = False, ORI_COMP
= False):

’# add_obstacles(name, height, radius, pose, orientation, r, g, b):’

# self.add_obstacles("up", 0.54, 0.09, [-0.76, 0, 0.345], [1.5707,
1.5707, 0], 1, 0, 0)

# self.add_obstacles("bottom", 0.54, 0.09, [-0.76, 0, 0.55], [1.5707,
1.5707, 0], 1, 0, 0)

# self.add_obstacles("right", 0.35, 0.09, [-0.76, 0.185, 0.455], [O,
0, 0], 1, 0, 0)

# self.add_obstacles("left", 0.35, 0.09, [-0.76, -0.185, 0.455], [O,
0, 01, 1, 0, 0)
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self.add_sphere(self.ptFinal, self.diam_goal, ColorRGBA(0.0, 1.0, 0.0,
1.0))

# apply obstacle colors to moveit
self.scene.sendColors()

# Final position
Displacement = [0.01, 0.01, 0.01]

# CPA Parameters

err = self.diam_goal[0] / 2 # Max error allowed

max_iter = 1500 # Max iteratioms

zeta = [0.5 for i in range(7)] # Attractive force gain of each obstacle

rho_ 0 = [i / 2 for i in self.diam_obs] # Influence distance of each
obstacle

dist_att = 0.05 # Influence distance in workspace

dist_att_config = 0.2 # Influence distance in configuration space

alfa = 0.5 # Grad step of positioning - Default: 0.5

alfa_rot = 0.05 # Grad step of orientation - Default: 0.4

CP_urb5_rep = [0.15]%6 # Repulsive fields on URbH

CP_urb_rep[-2] = 0.15

if args.AAPF and not args.0riON or (AAPF_COMP and not ORI_COMP):
self.eta = [0.0006 for i in range(6)]

ptAtual = get_urb5_position(self.ur5_param, self.joint_states.position,
"grasping_link")

hz = get_param("rate", 120)
r = rospy.Rate(hz)

dist_EOF_to_Goal = np.linalg.norm(ptAtual -
np.asarray(self.ptFinal[0]))
dist_EOF_to_Goal_vec = dist_EOF_to_Goal

n=20
err_ori =1
corr = [R, P, Y]

# Get current orientation and position of grasping link
urb_joint_positions_vec = self.joint_states.position

joint_attractive_forces = np.zeros(6)
joint_rep_forces = np.zeros(6)
ori_atual_vec = np.zeros(3)
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while (dist_EQOF_to_Goal > err or abs(err_ori) > 0.02) and not
rospy.is_shutdown() and n < max_iter:

# Get URS5 Jacobian of each link
Jacobian = get_geometric_jacobian(
self .urb5_param, self.joint_states.position)

# Get position and distance from each link to each obstacle
CP_pos, CP_dist = self.get_repulsive_cp(self.obs_pos,
self.joint_states.position, CP_ur5_rep)

oriAtual euler_from_matrix(self.matrix_from_joint_angles())

[oriAtual[i] + corr[i] for i in range(len(corr))]

oriAtual

# Get attractive linear and angular forces and repulsive forces
joint_att_force_p, joint_att_force_w, joint_rep_force = \
CPA.get_joint_forces(args, ptAtual, self.ptFinal, oriAtual,
Displacement,
dist_EOF_to_Goal, Jacobian,
self.joint_states.position,
self.urb_param, zeta,
self.eta, rho_0, dist_att, dist_att_config,
Cp_dist, CP_pos, self.obs_pos,
CP_ur5_rep, AAPF_COMP)

joint_rep_force = np.clip(joint_rep_force, -0.1, 0.1)

# Joint angles UPDATE - Attractive force
self.joint_states.position = self.joint_states.position + \
alfa * joint_att_force_pl[0]
if args.0OriON or ORI_COMP:
self.joint_states.position = self.joint_states.position + \
alfa_rot * joint_att_force_w[O0]

# Joint angles UPDATE - Repulsive force
list = np.transpose(joint_rep_force[0]).tolist()

for j in range(6):
for i in range(6):
self.joint_states.position[i] =
self. joint_states.position[i] + \
alfa * list[j][i]

matrix = self.matrix_from_joint_angles()

# Get current position of grasping_link
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ptAtual = get_ur5_position(se1f.ur5_param,
self.joint_states.position, "grasping_link")

if args.plotPath:
# Visualize path planned in RVIZ
self.visualize_path_planned(ptAtual)

# Get absolute orientation error
err_ori = np.sum(oriAtual)

# Get distance from EOF to goal
dist_EOF_to_Goal = np.linalg.norm(ptAtual -
np.asarray(self.ptFinal))

# If true, publish topics to transform into csv later on
if args.CSV:
urb5_joint_positions_vec = np.vstack((ur5_joint_positions_vec,
self.joint_states.position))
dist_EOF_to_Goal_vec = np.vstack((dist_EOF_to_Goal_vec,
dist_EOF_to_Goal))
joint_attractive_forces = np.vstack((joint_attractive_forces,
joint_att_force_p))
joint_rep_forces = np.vstack((joint_rep_forces, list[-1])) #
list[-1] corresponds to rep forces on the last joint
ori_atual_vec = np.vstack((ori_atual_vec, oriAtual))

# If true, publish topics to publish_trajectory.py in order to see

the path in RVIZ

# if n % 10 is used to reduced the total number of waypoints
generated by APF or AAPF

if args.plot:
ifnh1==

self .pose.pose.position.x = ptAtual[0]
self .pose.pose.position.y = ptAtuall[1l]
self .pose.pose.position.z = ptAtual[2]

self.pose_publisher.publish(self.pose)
# Save way points in order to send it to gazebo

way_points.append(self.joint_states.position)
try:
r.sleep()
except rospy.exceptions.ROSTimeMovedBackwardsException:

pass

n+=1
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def
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return way_points, n, dist_EOF_to_Goal, ur5_joint_positions_vec,
dist_EOF_to_Goal_vec, joint_attractive_forces, joint_rep_forces,
ori_atual_vec

trajectory_execution(self, args, point, home_pos, way_points, traj):
raw_input ("’ =========== Aperte enter para iniciar o algoritmo")

# if ur5_robot_APF:
# urb5_robot_APF.scene.clear

self.scene.clear()

# Final positions
self.ptFinal = point

# Angle correction relative to base_link (from grasping_link)
R, P, Y =1.5707, 0, -1.5707

if not args.COMP:
way_points, n, dist_EOF_to_Goal, urb_joint_positions_vec,
dist_EOF_to_Goal_vec, joint_attractive_forces,
joint_rep_forces, ori_atual_rep = \
self.CPA_loop(args, way_points, R, P, Y)

# Smooth path generated by AAPF
wayPointsSmoothed = smooth_path(way_points)

print_output(n, way_points, wayPointsSmoothed, dist_EOF_to_Goal)

if args.OriON:

oriStatus = ’0riON’
else:

oriStatus = ’0riOFF”’
if args.AAPF:

APFStatus = ’AAPF’

elif args.APF:
APFStatus = ’APF’

if args.CSV:
print_joint_angles(args, ur5_joint_positions_vec, ’joint_’ +
str(APFStatus) + ’_’ + str(oriStatus), ’joint’)
print_joint_angles(args, wayPointsSmoothed, ’joint_’ +
’smoothed_’ + str(APFStatus) + ’_’ + str(oriStatus),
’joint?)

print_joint_angles(args, dist_EOF_to_Goal_vec, ’dist_to_goal_’
+ str(APFStatus) + ’_’° + str(oriStatus), ’dist_to_goal’)
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print_joint_angles(args, joint_attractive_forces[1:],
ATTFORCE_’ + str(APFStatus) + ’_’ + str(oriStatus),
’joint’)

print_joint_angles(args, joint_rep_forces[1:], ’REPFORCE_’ +
str(APFStatus) + ’_’ + str(oriStatus), ’joint’)

# plt.plot(np.linspace(0, len(joint_rep_forces),
len(joint_rep_forces)), joint_rep_forces)

# plt.show()

if args.OriON:
print_joint_angles(args, ori_atual_rep[1:], ’ORC_’> +
str (APFStatus) + ’_’ + str(oriStatus), ’euler_angles’)

if args.plot:
# choose the trajectory to display in RVIZ
self .pose.header.frame_id = "trajectory"
self.pose_publisher.publish(self.pose)

if args.realUR5:
raw_input ("’ =========== Aperte enter para enviar a trajetoria
para o URS !!!REAL!!! \n")
self .move (wayPointsSmoothed, "real")
else:
raw_input ("’ =========== Press enter to send the trajectory to
Gazebo \n")
self.move(wayPointsSmoothed, "gazebo")

else:

print ("Generatin trajectory [AAPF: ON | Orientation Control: ON]")

AAPF_COMP = True

ORI_COMP = True

—s —» _» _, dist_EOF_to_Goal_AAPF_OriON, _, _, _ =
self.CPA_loop(args, way_points, R, P, Y, AAPF_COMP, ORI_COMP)

dist_EOF_to_GOAL_traj = []

dist_EOF_to_GOAL_traj.append(dist_EOF_to_Goal_AAPF_OriON)

self.joint_states.position = home_pos

self.scene.clear()

print("Generatin trajectory [AAPF: OFF | Orientation Control: ON]")

AAPF_COMP = False

ORI_COMP = True

—s —» —» _, dist_EOF_to_Goal_APF_OriON, _, _, _ =
self.CPA_loop(args, way_points, R, P, Y, AAPF_COMP, ORI_COMP)

dist_EOF_to_GOAL_traj.append(dist_EOF_to_Goal_APF_0riON)

self. joint_states.position = home_pos
self.scene.clear()
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print ("Generatin trajectory [AAPF: ON | Orientation Control: OFF]")

AAPF_COMP = True

ORI_COMP = False

—s _s _s _, dist_EOF_to_Goal_AAPF_OriOFF, _, _, _ =
self.CPA_loop(args, way_points, R, P, Y, AAPF_COMP, ORI_COMP)

dist_EOF_to_GOAL_traj.append(dist_EOF_to_Goal_AAPF_0OriOFF)

if args.CSV:
print_joint_angles(args, dist_EOF_to_GOAL_traj,
’COMP_dist_to_goal’, ’dist_to_goal’)

def main(args):

if

ur5_robot = MoveGroupPythonIntefaceTutorial (args)
way_points = []
urb5_robot.scene.clear()

# URb Initial position

home_pos = [3.14, -1.5707, 0, -1.5707, -1.5707, -1.5707] # default: [O,
-1.5707, 0, -1.5707, -1.5707, -1.5707]

urb_robot. joint_states.position = home_pos

urb5_robot.path_color = ColorRGBA(0.0, 1.0, 0.0, 0.8)

way_points.append(ur5_robot. joint_states.position)

urb_robot.move (way_points, '"gazebo")

if args.realUR5:
raw_input ("’ =========== Aperte enter para posicionar o UR5 !!REAL!!
na posicao UP\n")
ur5_robot.move ((home_pos,), "real")

PAP A

Trajectory 1

23

point = [[-0.80, 0, 0.45]]

way_points = []

urb5_robot.trajectory_execution(args, point, home_pos, way_points,
>traj_1’)#, urb5_robot_APF)

__name__ == ’__main__’:

try:
arg = parse_args()
main(arg)

except rospy.ROSInterruptException:
pass

except KeyboardInterrupt:
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pass
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APPENDIX B

APF CODE

#!/usr/bin/env python

# ROS import
import sys
import rospy

from tf.transformations import quaternion_from_euler, quaternion_matrix

import tf

from tf import TransformListener, Transformer
import publish_joint_states

from publish_joint_states import *

# Moveit Import
import moveit_commander
# import moveit_python

from moveit_commander.conversions import pose_to_list

# Msg Import

from moveit_msgs.msg import *

from moveit_msgs.srv import *

from geometry_msgs.msg import *

from std_msgs.msg import String, Header, ColorRGBA
from visualization_msgs.msg import Marker

from shape_msgs.msg import SolidPrimitive

from sensor_msgs.msg import JointState

# Inverse Kinematics Import
from ur_inverse_kinematics import *

# Python Import

import numpy as np

from numpy import array, dot, pi
from numpy.linalg import det, norm

# Customized code

from get_geometric_jacobian import *
from get_urb_position import *

from show_HTM import =*

from get_dist3D import *

# import CPA_classico

o6
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from CPA_classico import *

### Use instructions

# First launch RViz:

roslaunch ur5_moveit_config demo.launch
# Second - run URG_CPA file

rosrun URS5_CPA.py

def get_param(name, value=None):
private = "7Ys" % name
if rospy.has_param(private):
return rospy.get_param(private)
elif rospy.has_param(name) :
return rospy.get_param(name)
else:
return value

class MoveGroupPythonIntefaceTutorial(object):
"""MoveGroupPythonIntefaceTutorial"""

def __init__(self):
super (MoveGroupPythonIntefaceTutorial, self).__init__Q)

moveit_commander.roscpp_initialize(sys.argv)
rospy.init_node(’move_group_python_interface_ur5_robot’,
anonymous=True)

self.display_trajectory_publisher =
rospy.Publisher (’/move_group/display_planned_path’,
moveit_msgs.msg.DisplayTrajectory,
queue_size=20)
rospy.sleep(0.5)

# Topico para publicar marcadores para o Rviz
self .marker_publisher = rospy.Publisher(’visualization_marker’,
Marker, queue_size=100)

rospy.sleep(0.5)

self.tf = TransformListener()
rospy.sleep(0.5)

self.init_id_path = 13

# Topico para publicar no /robot_state_publisher
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self.pub_joint_states = rospy.Publisher(’joint_states_urb5’,
JointState, queue_size=50)

self .marker = Marker ()
self.joint_states = JointState()
self.joint_states.name = [’shoulder_pan_joint’, ’shoulder_lift_joint’,
’elbow_joint’, ’wrist_1_joint’, ’wrist_2_joint’,
’wrist_3_joint’]

# d1, SO, EO, a2, a3, d4, d45, d5, d6
self.ur5_param = (0.089159, 0.13585, -0.1197, 0.425, 0.39225, 0.10915,
0.093, 0.09465, 0.0823 + 0.15)

Calculate the initial robot position - Used before CPA application
Need to update: pass analytical homogeneous transformation to invKine
def get_ik(self, pose):

matrix = tf.TransformerROS()

# The orientation of /grasping_link will be constant

q = quaternion_from_euler(1.5707, 1.5707, 0)

matrix2 = matrix.fromTranslationRotation((pose[0]*(-1), pose[1]*(-1),
pose[2]), (ql[0], ql1], ql2], q[31))
# print "The quaternion representation is s %s %s %s." % (ql0], ql1],

ql2], ql31)

rospy.loginfo(matrix2)

th = invKine(matrix2)

soll = th[:, 0].transpose()
joint_values_from_ik = np.array(soll)

joint_values = joint_values_from_ik[0, :]

return joint_values.tolist()

Also gets each frame position through lookupTransform

def get_repulsive_cp(self, obs_pos, joint_values, diam_rep_urb):
marker_lines = Marker()
urb_links = [

"shoulder_link",

"upper_arm_link",
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"forearm_link",
"wrist_1_1link",
"wrist_2_link",
"wrist_3_1link",
"grasping_link"

cp_position, cp_distance = [], []
for i in range(len(ur5_links)):
# link_pose = get_urb5_position(self.ur5_param, joint_values,
ur5_links[i])
link_pose, _ = self.tf.lookupTransform("base_link", ur5_links[i],
rospy.Time())
cp_position.append(link_pose)
cp_distance.append(np.linalg.norm(link_pose - np.asarray(obs_pos)))
# print(cp_distance)
marker_lines.points.append(Point (obs_pos[0], obs_pos[1i],
obs_pos[2]))
marker_lines.points.append(Point (1ink_pose[0], link_pose[1],
link_pose[2]))
self.add_sphere(link_pose, i, diam_rep_ur5, ColorRGBA(1.0, 0.0,
0.0, 0.3))

return cp_position, cp_distance

Adds lines representing distances from obstacles to the robot control’s
point
def add_line(self, marker):
marker .header.frame_id = "base_link"
marker.type = marker.LINE_STRIP
marker.action = marker.MODIFY
Vector3(0.008, 0.009, 0.1)
marker.color = ColorRGBA(0.0, 1.0, 0.0, 0.8)
self .marker_publisher.publish(marker)

marker.scale

Adds the obstacles and repulsive control points on the robot
def add_sphere(self, pose, id, diam, color):

marker = Marker()

marker .header.frame_id = "base_link"

marker.id = id

marker.pose.position = Point(pose[0], posel[l], posel[2])

marker.type = marker.SPHERE

marker.action = marker.MODIFY
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marker.scale = Vector3(diam, diam, diam)
marker.color
self .marker_publisher.publish(marker)

color

Plot robot’s path to the RViz environment
def visualize_path_planned(self, path):
self .marker.points.append(Point (path[0], path[1], path[2]))
self .marker.header.frame_id = "base_link"
self .marker.id = 14
self .marker.type = self.marker.LINE_STRIP
self .marker.action = self.marker.ADD
self .marker.scale = Vector3(0.008, 0.009, 0.1)
self .marker.color = ColorRGBA(0.0, 1.0, 0.0, 0.8)
self .marker_publisher.publish(self.marker)

Delete all markers in Rviz

def delete_markers(self):
marker = Marker()
marker.action = marker.DELETEALL
self .marker_publisher.publish(marker)

main():
ur5_robot = MoveGroupPythonIntefaceTutorial()
urb_robot.delete_markers()

### URS Initial position

raw_input ("’ =========== Aperte enter para posicionar o UR5 \n")

ur5_robot. joint_states.position = [0, -1.5707, O, -1.5707, 0, O] # Posicao
configurada no fake_controller_joint_states

ur5_robot.pub_joint_states.publish(ur5_robot.joint_states)

raw_input ("’ =========== Aperte enter para carregar o obstaculo e objetivo
\n")

### Final and obstacle points

obs_pos = [0.45, 0.4, 0.4]

diam_obs = 0.4

ur5_robot.add_sphere(obs_pos, 11, diam_obs, ColorRGBA(1.0, 0.0, 0.0, 0.5))

ptFinal = [0.45, 0.3, 0.5]

oriFinal = [0.01, 0.01, 0.01]

diam_goal = 0.04

ur5_robot.add_sphere(ptFinal, 13, diam_goal, ColorRGBA(0.0, 1.0, 0.0, 0.8))
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### CPA Parameters

err = diam_goal/2

max_iter = 5000

zeta = [0.5 for i in range(7)]
eta = [0.005 for i in range(6)]
rho_0 = diam_obs

dist_att = 0.05
dist_att_config = 0.15

alfa = 0.5

alfa_rot = 0.2

diam_rep_ur5 = 0.15

raw_input ("’ =========== Pressione enter para posicionar o UR5 \n")

urb5_robot.joint_states.position = [0, -1.5707, 0, -1.5707, 0, O] # Posicao
configurada no fake_controller_joint_states

urb5_robot.pub_joint_states.publish(ur5_robot.joint_states)

### GET repulsive control point’s position through LOOKUPTRANSFORM
CP_pos, CP_dist = urb_robot.get_repulsive_cp(obs_pos,
ur5_robot.joint_states.position, diam_rep_urb)

### Parameters
CPAA_state = False
Orientation_state = True

hz = get_param("rate", 50) # 10hz
r = rospy.Rate(hz)

ptAtual, oriAtual = urb_robot.tf.lookupTransform("base_link",
"grasping_link", rospy.Time())

dist_EOF_to_Goal = np.linalg.norm(ptAtual - np.asarray(ptFinal))
n=20

raw_input ("’ =========== Aperte enter para iniciar o algoritmo dos CPAs")
while dist_EOF_to_Goal > err and not rospy.is_shutdown():
Jacobian = get_geometric_jacobian(ur5_robot.ur5_param,
urb5_robot. joint_states.position)
CP_pos, CP_dist = urb_robot.get_repulsive_cp(obs_pos,
urb5_robot.joint_states.position, diam_rep_urb)

joint_att_force_p, joint_att_force_w, joint_rep_force =
CPA_classico.get_joint_forces(ptAtual, ptFinal, oriAtual, oriFinal,

dist_EOF_to_Goal, Jacobian, urb5_robot.joint_states.position,
urb_robot.ur5_param, zeta,

eta, rho_0, dist_att, dist_att_config, CP_dist, CP_pos, obs_pos,
CPAA_state, diam_rep_urb)
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# Joint angles UPDATE
urb_robot. joint_states.position = urb5_robot.joint_states.position +
alfa*xjoint_att_force_p[0]
if Orientation_state:
urb_robot.joint_states.position = urb_robot.joint_states.position
+ alfa_rot*joint_att_force_w[0]

list = np.transpose(joint_rep_force[0]).tolist()
for j in range(6):
for i in range(6):
urb_robot.joint_states.position[i] =
ur5_robot.joint_states.position[i] + alfaxlist[j][i]
ptAtual, oriAtual = urb_robot.tf.lookupTransform("base_link",
"grasping_link", rospy.Time())
oriAtual += quaternion_from_euler(1.5707, 0, 0)

if n % 10 == 0:

ur5_robot.visualize_path_planned(ptAtual)

print("Distance to the goal: " + str(dist_EOF_to_Goal))
dist_EOF_to_Goal = np.linalg.norm(ptAtual - np.asarray(ptFinal))
urb_robot.pub_joint_states.publish(ur5_robot.joint_states)

try:
r.sleep()
except rospy.exceptions.ROSTimeMovedBackwardsException:
pass
n+=1
if __name__ == ’__main__’:
try:
main()
except rospy.ROSInterruptException:
pass

except KeyboardInterrupt:
pass




APPENDIX C

GEOMETRIC JACOBIAN

from numpy import array, cos, sin
import numpy as np

Anallytical jacobian
type:
urb_param: list
joint_values: list

def get_geometric_jacobian(ur5_param, joint_values):

thl, th2, th3, th4, thb5, th6 = joint_values
di, S0, EO, a2, a3, d4, d45, d5, d6 = urb_param

# J_1 = array([[0, O, O, O, O, O, O],
# (o, o, o, 0, 0o, 0, 07,
# (o, o, o, 0, 0, 0, 01,
# (o, o, o, 0, o, 0, 071,
# (1, o, o, 0, 0, 0, 0,
# (o, o, o, 0, 0, 0, 011

J_2_T = ([[-S0*cos(thl), -SO*sin(thl), 0],
[0, o, 01,
(o, o, o],
[o, o, 01,
(o, o, o],
[0, 0, 011)

J_3_T = ([[-EO*cos(thl) - SO*cos(thl) - a2*sin(thl)*cos(th2), -EO*sin(thl)
- SO0*sin(thl) + a2*cos(thl)*cos(th2), 0],
[-a2*sin(th2) *cos(thl), -a2+*sin(thl)*cos(th2), -a2%cos(th2)],
(o, o, ol,
[o, o, 01,
(o, o, o],
[0, 0, 011)
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J_4_T = ([[-EO*cos(thl) - SO*cos(thl) - a2*sin(thl)*cos(th2) -
a3*sin(thl) *cos(th2 + th3), -EO0*sin(thl) - SO0*sin(thl) +
a2*cos(thl)*cos(th2) + a3*cos(thl)*cos(th2 + th3), 0],

[(-a2*%sin(th2) - a3*sin(th2 + th3))*cos(thl), (-a2*sin(th2) -
a3*sin(th2 + th3))*sin(thl), -a2*cos(th2) - a3*cos(th2 + th3)],

[-a3*sin(th2 + th3)*cos(thl), -a3*sin(thl)*sin(th2 + th3),
-a3*cos(th2 + th3)],

(o, o, o],

[0, 0, 0],

(o, o, 0l11)

J_5_T = ([[-EO*cos(thl) - SO*cos(thl) - a2*sin(thl)*cos(th2) -
a3*sin(thl)*cos(th2 + th3) - d45*cos(thl), -EO*sin(thl) - SO*sin(thil)
+ a2*cos(thl)*cos(th2) + a3*cos(thl)*cos(th2 + th3) - d45*sin(thil), 0],
[(-a2*sin(th2) - a3*sin(th2 + th3))*cos(thl), (-a2*sin(th2) -
a3*sin(th2 + th3))*sin(thl), -a2*cos(th2) - a3*cos(th2 + th3)],
[-a3*sin(th2 + th3)*cos(thl), -a3*sin(thil)*sin(th2 + th3),
-a3*cos(th2 + th3)],
[0, o, 01,
(o, o, 0ol,
[0, 0, 011

J_6_p_T = ([[-E0*cos(thl) - SO*cos(thl) - a2xsin(thl)*cos(th2) -
a3*sin(thl) *cos(th2 + th3) - d45*cos(thl) + d5*sin(thl)*sin(th2 + th3
+ th4), -EO*sin(thl) - SO*sin(thl) + a2*cos(thl)*cos(th2) +
a3*cos(thl)*cos(th2 + th3) - d45xsin(thl) - db5*sin(th2 + th3 +
th4)*xcos(thl), 0],

[(-a2*sin(th2) - a3*sin(th2 + th3) - d5*cos(th2 + th3 +
th4))*cos(thl), (-a2*sin(th2) - a3*sin(th2 + th3) -
d5*cos(th2 + th3 + th4))*sin(thl), -a2*cos(th2) - a3*cos(th2
+ th3) + d5*sin(th2 + th3 + th4)],

[(-a3*sin(th2 + th3) - d5*cos(th2 + th3 + th4))*cos(thl),
(-a3*sin(th2 + th3) - d5*cos(th2 + th3 + th4))*sin(thl),
-a3*cos(th2 + th3) + d5*sin(th2 + th3 + th4)],

[-d5*%cos(thl) *cos(th2 + th3 + th4), -d5*sin(thl)*cos(th2 + th3 +
th4), d5*sin(th2 + th3 + th4)],

(o, o, ol,

[0, 0, 011

gain_3 = 2.0

J_7_T = ([[-EO*cos(thl) - SO*cos(thl) - a2*sin(thl)*cos(th2) -
a3*sin(thl) *cos(th2 + th3) - d45*cos(thl) + d5*sin(thl)*sin(th2 + th3
+ th4) - d6*(sin(th1l)*sin(th5)*cos(th2 + th3 + th4) +
cos(thl)*cos(th5)), -EO*sin(thl) - SO*sin(thl) + a2+*cos(thl)*cos(th2)
+ a3*cos(thl)*cos(th2 + th3) - d45*sin(thl) - d5*sin(th2 + th3 +
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th4)*cos(thl) - d6*(sin(thl)*cos(th5) - sin(th5)*cos(thl)*cos(th2 +
th3 + th4)), 0],

[(-a2*sin(th2) - a3*sin(th2 + th3) - d5*cos(th2 + th3 + th4) -
d6*sin(th5)*sin(th2 + th3 + th4))*cos(thl), (-a2*sin(th2) -
a3*sin(th2 + th3) - d5*cos(th2 + th3 + th4) -
d6*sin(th5) *sin(th2 + th3 + th4))*sin(thl), -a2*cos(th2) -
a3*cos(th2 + th3) + d5*sin(th2 + th3 + th4) -
d6*sin(th5)*cos(th2 + th3 + th4)],

[((-a3*sin(th2 + th3) - d5*cos(th2 + th3 + th4) -
d6*sin(thb)*sin(th2 + th3 + th4))*cos(thl))*gain_3,
((-a3*sin(th2 + th3) - db5*cos(th2 + th3 + th4) -
d6*sin(thb)*sin(th2 + th3 + th4))#*sin(thl))*gain_3,
(-a3*cos(th2 + th3) + db*sin(th2 + th3 + th4) -
d6*sin(th5)*cos(th2 + th3 + th4))*gain_3],

[(-d5%cos(th2 + th3 + th4) - d6*sin(th5)*sin(th2 + th3 +
th4))*cos(thl), (-d5*cos(th2 + th3 + th4) - d6*sin(thb)*sin(th2
+ th3 + th4))*sin(thl), d5*sin(th2 + th3 + th4) -
d6*sin(th5)*cos(th2 + th3 + th4)],

[d6*(sin(thl) *sin(th5) + cos(thl)*cos(th5)*cos(th2 + th3 + th4)),
d6*(sin(thl)*cos(th5)*cos(th2 + th3 + th4) -
sin(th5)*cos(thl)), -d6*sin(th2 + th3 + th4)x*cos(th5)],

[0, 0, 011

J_6_w_T = ([[0, 1, O],

[-sin(thl), cos(thl), 0],

[-sin(thl), cos(thl), 0],

[-sin(thl), cos(thl), 0],

[-sin(th2 + th3 + th4)*cos(thl), -sin(th1)*sin(th2 + th3 + th4),
-cos(th2 + th3 + th4)],

[-sin(th1l)*cos(th5) + sin(th5)*cos(thl)*cos(th2 + th3 + th4),
sin(th1l)*sin(th5)*cos(th2 + th3 + th4) + cos(thl)*cos(th5),
-sin(th5)*sin(th2 + th3 + th4)]])

return (J_2_T, J_3_T, J_4.T, J.5_T, J_6_p_T, J_7_T, J_6_w_T)






